Abstract:
A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.
Abstract:
High electron mobility transistors (HEMTs) including a substrate and a HEMT stack on the substrate, the HEMT stack including a compound semiconductor layer that includes a 2-dimensional electron gas (2DEG), an upper compound semiconductor layer that has a polarization index higher than a polarization index of the compound semiconductor layer, and a source electrode, a drain electrode, and a gate that are disposed on the upper compound semiconductor layer. The substrate may be a nitride substrate that has a dielectric constant and a thermal conductivity higher than a dielectric constant and a thermal conductivity of a silicon substrate. The substrate may include an insulating layer that has a dielectric constant and a thermal conductivity higher than a dielectric constant and a thermal conductivity of the silicon substrate, a metal layer that is deposited on the insulating layer, and a plate that is attached to the metal layer.
Abstract:
Provided are a high electron mobility transistor and/or a method of manufacturing the same. The high electron mobility transistor includes a channel layer, a channel supply layer formed on the channel layer to generate a two-dimensional electron gas (2DEG), a depletion forming layer formed on the channel supply layer, a gate electrode formed on the depletion forming layer, and a barrier layer formed between the depletion forming layer and the gate electrode. Holes may be prevented from being injected into the depletion forming layer from the gate electrode, thereby reducing a gate forward current.
Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes a channel layer having a 2-dimensional electron gas (2DEG), a channel supply layer on the channel layer, a source electrode and a drain electrode spaced apart from each other on one of the channel layer and the channel supply layer, at least one channel depletion layer on the channel supply layer; a gate electrode on at least a part of the channel depletion layer, and at least one bridge connecting the channel depletion layer and the source electrode. The channel depletion layer is configured to form a depletion region in the 2DEG. The HEMT has a ratio of a first impedance to a second impedance that is a uniform value. The first impedance is between the gate electrode and the channel depletion layer. The second impedance is between the source electrode and the channel depletion layer.
Abstract:
A method of packaging power devices at a wafer level is disclosed. The method includes preparing a wafer having a plurality of nitride power devices thereon, each of the plurality of nitride power devices having a plurality of electrodes thereon; forming a polymer layer on the plurality of nitride power devices; exposing each of the electrodes from the polymer layer; forming a solder bump on the exposed electrodes; forming a molding layer covering the solder bump on the polymer layer; and removing the wafer and exposing the solder bump.
Abstract:
According to example embodiments, High electron mobility transistors (HEMTs) may include a discontinuation region in a channel region. The discontinuation region may include a plurality of 2DEG unit regions that are spaced apart from one another. The discontinuation region may be formed at an interface between two semiconductor layers or adjacent to the interface. The discontinuation region may be formed by an uneven structure or a plurality of recess regions or a plurality of ion implantation regions. The plurality of 2DEG unit regions may have a nanoscale structure. The plurality of 2DEG unit regions may be formed in a dot pattern, a stripe pattern, or a staggered pattern.
Abstract:
A high electron mobility transistor (HEMT) according to example embodiments includes a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a reverse diode gate structure on the second semiconductor layer. A source and a drain may be on at least one of the first semiconductor layer and the second semiconductor layer. A gate electrode may be on the reverse diode gate structure.