Abstract:
In one embodiment, an IGBT is formed to include a plurality of termination trenches in a termination region of the IGBT. An embodiment may include that one end of one or more termination trenches may be exposed on one surface of the semiconductor device.
Abstract:
A semiconductor device structure comprises a region of semiconductor material comprising a first conductivity type, a first major surface, and a second major surface opposite to the first major surface. A first trench gate structure includes a first trench extending from the first major surface into the region of semiconductor material, a first dielectric structure is over sidewall surfaces and a portion of a lower surface of the first trench, wherein the first dielectric structure comprises a first opening adjacent to the lower surface of the first trench, a first recessed contact extends through the first opening, and a first contact region is over the first recessed contact within the first trench, wherein the first recessed contact and the first contact region comprise different materials. A first doped region comprising a second dopant conductivity type opposite to the first conductivity type is in the region of semiconductor material and is spaced apart from the first major surface and below the first trench. A gate contact region is in the region of semiconductor material and is electrically connected to the first doped region.
Abstract:
Systems and methods of the disclosed embodiments include reducing defects in a semiconductor layer. The defects may be reduced by forming the semiconductor layer on a substrate, removing at least a portion the substrate from an underside of the semiconductor layer, and annealing the semiconductor layer to reduce the defects in the layer. The annealing includes focusing energy at the layer.
Abstract:
Implementations of semiconductor devices may include: a plurality of drain fingers and a plurality of source fingers interdigitated with one another; at least one gate; and at gate bus formed to completely surround the plurality of drain fingers and the plurality of source fingers; wherein the gate bus is mechanically and electrically coupled to the at least one gate.
Abstract:
Implementations of semiconductor devices may include: a plurality of drain fingers and a plurality of source fingers interdigitated with one another; at least one gate; and at gate bus formed to completely surround the plurality of drain fingers and the plurality of source fingers; wherein the gate bus is mechanically and electrically coupled to the at least one gate.
Abstract:
High-electron-mobility transistor (HEMT) devices are described in this patent application. In some implementations, the HEMT devices can include a back barrier hole injection structure. In some implementations, the HEMT devices include a conductive striped portion electrically coupled to a drain contact.
Abstract:
Implementations of semiconductor devices may include: a plurality of drain fingers and a plurality of source fingers interdigitated with one another; at least one gate; and at gate bus formed to completely surround the plurality of drain fingers and the plurality of source fingers; wherein the gate bus is mechanically and electrically coupled to the at least one gate.
Abstract:
In an embodiment, a method of forming a semiconductor may include forming a plurality of active trenches and forming a termination trench substantially surrounding an outer periphery of the plurality of active trenches. The method may also include forming at least one active trench of the plurality of active trenches having corners linking trench ends to sides of active trenches wherein each active trench of the plurality of active trenches has a first profile along the first length and a second profile at or near the trench ends; and forming a termination trench substantially surrounding an outer periphery of the plurality of active trenches and having a second profile wherein one of the first profile or the second profile includes a non-linear shape.
Abstract:
In accordance with an embodiment, a semiconductor component includes a support having a side in which a device receiving structure and an interconnect structure are formed and a side from which a plurality of leads extends. A semiconductor device having a control terminal and first and second current carrying terminals and configured from a III-N semiconductor material is mounted to the device receiving structure. A first electrical interconnect is coupled between the first current carrying terminal of the semiconductor device and a first lead. A second electrical interconnect is coupled between the control terminal of the semiconductor device and a second lead.
Abstract:
A cascode switch structure includes a group III-V transistor structure having a first current carrying electrode, a second current carrying electrode and a first control electrode. A semiconductor MOSFET device includes a third current carrying electrode electrically connected to the first current carrying electrode, a fourth current carrying electrode electrically connected to the first control electrode, and a second control electrode. A first diode includes a first cathode electrode electrically connected to the second current carrying electrode and a first anode electrode. A second diode includes a second anode electrode electrically connected to the first anode electrode and a second cathode electrode electrically connected to the fourth current carrying electrode. In one embodiment, the group III-V transistor structure, the first diode, and the second diode are integrated within a common substrate.