Abstract:
A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
Abstract:
A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
Abstract:
A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
Abstract:
A semiconductor device includes a region of semiconductor material having first and second opposing major surfaces. A trench structure includes a trench extending into the region of semiconductor material from the first major surface, wherein the first major surface defines a first horizontal plane in a cross-sectional view. The trench structure further includes a conductive material disposed within the trench and separated from the region of semiconductor material by a dielectric region. A Schottky contact region is disposed adjacent the first major surface on opposing sides of the trench structure, the Schottky contact region having an upper surface residing on a second horizontal plane in the cross-sectional view. The dielectric region comprises an uppermost surface and configured such that a major portion of the uppermost surface is disposed above the first horizontal plane in the cross-sectional view. The structure and method provide a semiconductor device with improved performance (e.g., reduced leakage and more stable breakdown voltage) and improved reliability.
Abstract:
A method of forming a semiconductor device includes providing a region of semiconductor material comprising a major surface. A termination trench is provided extending from a first portion of the major surface into the region of semiconductor material to a first depth and has a first width. A first active trench is provided extending from a second portion of the major surface into the region of semiconductor material to a second depth and has a second width less than the first width. A second active trench is provided extending from a third portion of the major surface into the region of semiconductor material to a third depth and has a third width less than the first width. A first conductive material is provided adjoining a fourth portion of the major surface, which is configured as a Schottky barrier. The selected trench depth difference alone or in combination with other features provides a semiconductor device having improved performance characteristics.
Abstract:
A number of variations may include a method that may include depositing a first layer on a first semiconductor layer in an overlying position with respect to at least one trench structure formed in the first semiconductor epi layer. The first layer may include a first metal and a second metal. A second layer may comprise a material constructed and arranged to scavenge semiconductor material migrating from the first semiconductor layer during annealing may be deposited over the first layer. The first semiconductor layer may be subjected to at least a first annealing act to provide a first structure. At least a portion of the first structure may be stripped to remove any of the first layer not reacted with the semiconductor material to form a Schottky barrier structure during the first annealing act.
Abstract:
A half-bridge circuit can include a high-side HEMT, a high-side switch transistor, a low-side HEMT, and a low-side switch transistor. The die substrates of the HEMTs can be coupled to the sources of their corresponding switch transistors. In another aspect, a packaged electronic device for a half-bridge circuit can have a design that can use shorter connectors that help to reduce parasitic inductance and resistance. In a further aspect, a packaged electronic device for a half-bridge circuit can include more than one connection along the bottom of the package allows less lead connections along the periphery of the packaged electronic device and can allow for a smaller package.
Abstract:
A method of forming a semiconductor includes a providing a termination trench and an active trench within a semiconductor layer. The active trench is configured to be at a shallower depth than the termination trench to provide a trench depth difference. The selected trench depth difference in combination with one or more of the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
Abstract:
In one embodiment, a trench Schottky rectifier includes a termination trench and active trenches provided in a semiconductor layer. A first active trench is configured to be at a shallower depth than the termination trench to provide a trench depth difference. A second active trench is configured to be at a depth similar to the termination trench. The selected trench depth difference in combination with one or more of the other second active trench depth, the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, first active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.
Abstract:
In one embodiment, a trench Schottky rectifier includes a termination trench and active trenches provided in a semiconductor layer. The active trenches are configured to be at a shallower depth than the termination trench to provide a trench depth difference. The selected trench depth difference in combination with one or more of the dopant concentration of the semiconductor layer, the thickness of the semiconductor layer, active trench width to termination trench width, and/or dopant profile of the semiconductor layer provide a semiconductor device having improved performance characteristics.