Abstract:
A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
Abstract:
An electronic device can include an electronic component and a termination region adjacent to the electronic component region. In an embodiment, the termination region can include an insulating region that extends a depth into a semiconductor layer, wherein the depth is less than 50% of the thickness of the semiconductor layer. In another embodiment, the termination region can include a first insulating region that extends a first depth into the semiconductor layer, and a second insulating region that extends a second depth into the semiconductor layer, wherein the second depth is less than the first depth. In another aspect, a process of forming an electronic device can include patterning a semiconductor layer to define a trench within termination region while another trench is being formed for an electronic component within an electronic component region.
Abstract:
A process of forming an electronic device can form an accumulation channel or an integrated diode by selective doping parts of a workpiece. In an embodiment, a doped region can be formed by implanting a sidewall of a body region. In another embodiment, a doped region can correspond to a remaining portion of a semiconductor layer after forming another doped region by implanting into a contact opening. The accumulation channel or the integrated diode can lower the barrier for a body diode turn-on. Reduced stored charge and QRR may be achieved, leading to lower switching losses.
Abstract:
In one general aspect, an apparatus can include a substrate having a semiconductor region, and a trench defined in the semiconductor region and having a sidewall. The apparatus can include a shield electrode disposed in the trench and insulated from the sidewall of the trench by a shield dielectric, the shield dielectric having a low-k dielectric portion and a high-k dielectric portion. The apparatus can include a gate electrode disposed in the trench and at least partially surrounded by a gate dielectric, and an inter-electrode dielectric disposed between the shield electrode and the gate electrode.
Abstract:
In one embodiment, a cascode rectifier structure includes a group III-V semiconductor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A rectifier device is integrated with the group III-V semiconductor structure and is electrically connected to the first current carrying electrode and to a third electrode. The control electrode is further electrically connected to the semiconductor substrate and the second current path is generally perpendicular to a primary current path between the first and second current carrying electrodes. The cascode rectifier structure is configured as a two terminal device.
Abstract:
An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate and having a primary surface. The electronic device can further include first conductive structures within each of a first trench and a second trench, a gate electrode within the first trench and electrically insulated from the first conductive structure, a first insulating member disposed between the gate electrode and the first conductive structure within the first trench, and a second conductive structure within the second trench. The second conductive structure can be electrically connected to the first conductive structures and is electrically insulated from the gate electrode. The electronic device can further include a second insulating member disposed between the second conductive structure and the first conductive structure within the second trench. Processing sequences can be used that simplify formation of the features within the electronic device.
Abstract:
In an embodiment, a method of forming a semiconductor may include forming a plurality of active trenches and forming a termination trench substantially surrounding an outer periphery of the plurality of active trenches. The method may also include forming at least one active trench of the plurality of active trenches having corners linking trench ends to sides of active trenches wherein each active trench of the plurality of active trenches has a first profile along the first length and a second profile at or near the trench ends; and forming a termination trench substantially surrounding an outer periphery of the plurality of active trenches and having a second profile wherein one of the first profile or the second profile includes a non-linear shape.
Abstract:
In a general aspect, a semiconductor device can include a semiconductor region of a first conductivity type and a well region of a second conductivity type. The well region can be disposed in the semiconductor region. An interface between the well region and the semiconductor region can define a diode junction at a depth below an upper surface of the semiconductor region. The semiconductor device can further include at least one dielectric region disposed in the semiconductor region. A dielectric region of the at least one dielectric region can have an upper surface that is disposed in the well region at a depth in the semiconductor region that is above the depth of the diode junction; and a lower surface that is disposed in the semiconductor region at a depth in the semiconductor region that is the same depth as the diode junction or below the depth of the diode junction.
Abstract:
A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
Abstract:
In a general aspect, a semiconductor device can include a semiconductor region of a first conductivity type and a well region of a second conductivity type. The well region can be disposed in the semiconductor region. An interface between the well region and the semiconductor region can define a diode junction at a depth below an upper surface of the semiconductor region. The semiconductor device can further include at least one dielectric region disposed in the semiconductor region. A dielectric region of the at least one dielectric region can have an upper surface that is disposed in the well region at a depth in the semiconductor region that is above the depth of the diode junction; and a lower surface that is disposed in the semiconductor region at a depth in the semiconductor region that is the same depth as the diode junction or below the depth of the diode junction.