Abstract:
Provided are a dielectric, a device including the same, and a method of preparing the dielectric. The dielectric material includes a NaNbO3 ternary material including a perovskite phase with a Sm element substituted into a Na site such that the NaNbO3 ternary material has a permittivity of 600 or more at 1 kHz, and a temperature coefficient of capacitance (TCC) of about -15% to about 15% in a range of about -55° C. to about +200° C.
Abstract:
A method of manufacturing a ceramic dielectric, including: heat-treating a barium precursor or a strontium precursor, a titanium precursor, and a donor element precursor to obtain a conducting or semiconducting oxide, preparing a mixture including the conducting or semiconducting oxide and a liquid-phase acceptor element precursor, and sintering the mixture to form a ceramic dielectric, wherein the ceramic dielectric includes a plurality of grains and a grain boundary between adjacent grains, and wherein the plurality of grains including an insulating oxide comprising an acceptor element derived from the acceptor element precursor.
Abstract:
A conductive component including: a substrate, a first layer comprising a plurality of island structures disposed on the substrate, wherein the island structures include graphene; and a second layer disposed on the first layer, wherein the second layer includes a plurality of conductive nanowires. Also, an electronic device including the conductive component.
Abstract:
A separation membrane including: an alloy including a Group 5 element, Fe, and Al, wherein the alloy includes a body-centered cubic lattice structure.
Abstract:
A relaxor-ferroelectric material, a method of synthesizing the same and a device including the relaxor-ferroelectric material are provided. The relaxor-ferroelectric material includes a ferroelectric material having a first polarization characteristic. The ferroelectric material having the first polarization characteristics includes a plurality of regions having a second polarization characteristic and spaced apart from each other, and the first polarization characteristic and the second polarization characteristic are different from each other. The ferroelectric material having the first polarization characteristics and the plurality of regions have different response characteristics with respect to alternating current (AC) sweeping. The plurality of regions may include a solid solution.
Abstract:
A ceramic dielectric includes a plurality of semi-conductive grains including a semiconductor oxide including barium (Ba), titanium (Ti), and a rare earth element. A ceramic dielectric also includes an insulative oxide located between adjacent semiconductor grains and an acceptor element including manganese (Mn), magnesium (Mg), aluminum (Al), iron (Fe), scandium (Sc), gallium (Ga), or a combination thereof, a method of manufacturing the ceramic dielectric, and a ceramic electronic component, and an electronic device including the ceramic dielectric.
Abstract:
A ceramic electronic component includes a pair of electrodes facing each other and a dielectric layer disposed between the pair of electrodes and including a plurality of ceramic nanosheets, where the plurality of ceramic nanosheets has a multimodal lateral size distribution expressed by at least two separated peaks, a method of manufacturing the same, and an electronic device including the ceramic electronic component.
Abstract:
A transparent electrode includes: a substrate; an electrically conductive layer disposed on the substrate and including a plurality of nano-sized conductors; and an organic/inorganic composite layer directly disposed on the electrically conductive layer and including a cross-linked polymer and nano-sized inorganic oxide particles, wherein the nano-sized inorganic oxide particles are included in an amount of greater than or equal to about 1 part by weight and less than about 35 parts by weight, relative to 100 parts by weight of the cross-linked polymer. Also an electronic device including the same.
Abstract:
A transparent electrode including: a substrate; an undercoat disposed on the substrate; a conductive film disposed on the undercoat and including a plurality of conductive metal nanowires and a carboxyl group-containing cellulose; and an overcoat disposed on the conductive film. Also an electronic device including the transparent electrode.
Abstract:
An electrode structure includes: a first nonconductive layer; a first conductive layer disposed on the first nonconductive layer; a second nonconductive layer disposed on the first conductive layer; a second conductive layer disposed on the second nonconductive layer; and a third nonconductive layer disposed on the second conductive layer, where at least one of the first conductive layer and the second conductive layer includes a two-dimensional conductive material.