Abstract:
A display apparatus is disclosed, which includes a storage configured to store a plurality of code sets, a communicator configured to perform communication with a remote control apparatus having a microphone, an interface connected to an audio output apparatus and configured to transmit an audio signal to the audio output apparatus, and a processor configured to transmit one of the plurality of code sets to the remote control apparatus while the audio output apparatus is outputting the audio signal, and in response to an audio signal received at the remote control apparatus through the microphone being received from the remote control apparatus, determine whether the code set transmitted to the remote control apparatus is a code set capable of controlling the audio output apparatus by determining whether the audio output apparatus is outputting the audio signal based on the received audio signal.
Abstract:
A control method of an optical connector and a display apparatus is provided. More particularly, a control method of an optical connector and a display apparatus for changing output of audio according to combination of an optical cable and the optical connector may be provided. Some of the example embodiments provide a control method of an optical connector and a display apparatus which may output audio through one of an internal speaker and an external apparatus connected via an optical cable according to combination of an optical cable and an optical connector.
Abstract:
An electronic apparatus and a power controlling method thereof are provided. The electronic apparatus may include a wireless communicator that communicates with a remote controller, a wired communicator that connects with an external input device and a processor that controls the wireless communicator to transmit a control signal to the remote controller for turning off power of the connected external input device in response to receiving a signal from the remote controller for turning off power of the electronic apparatus.
Abstract:
Provided are a material for forming a channel layer for a stretchable TFT, a method of preparing a channel layer for a stretchable TFT, a channel layer for a stretchable TFT, and a stretchable TFT. The material for forming the channel layer for the stretchable TFT includes an elastomer, an organic semiconductor material and a solvent. By mixing an elastomer and an organic semiconductor material and forming a thin film, a channel layer having an excellent conductivity and stretchability may be obtained.
Abstract:
An electronic apparatus and a power controlling method thereof are provided. The electronic apparatus may include a wireless communicator that communicates with a remote controller, a wired communicator that connects with an external input device and a processor that controls the wireless communicator to transmit a control signal to the remote controller for turning off power of the connected external input device in response to receiving a signal from the remote controller for turning off power of the electronic apparatus.
Abstract:
A pressure sensor and a pressure sensing method are provided. The pressure sensor includes a substrate; a sensor thin film transistor (TFT) disposed on the substrate and including a gate insulating layer, wherein the gate insulating layer includes an organic matrix in which piezoelectric inorganic nano-particles are dispersed; a power unit configured to apply an alternating current (AC) signal to a gate of the sensor TFT; and a pressure sensing unit configured to obtain a remnant polarization value based on a drain current which is generated in response to the AC signal and detected by the sensor TFT, and to sense a pressure based on the remnant polarization value.
Abstract:
A composite anode active material, an anode including the composite anode active material, a lithium battery including the anode, and a method of preparing the composite anode active material. The composite anode active material includes: a shell including a hollow carbon fiber; and a core disposed in a hollow of the hollow carbon fiber, wherein the core includes a first metal nanostructure and a conducting agent.
Abstract:
Provided is a memory device formed on a fiber. The memory device includes a lower electrode, a memory resistance layer, and an upper electrode, which are sequentially formed on a surface of the fiber. The memory resistance layer may have variable resistance properties. The memory device may further include an intermediate electrode and a switching layer formed between the memory resistance layer and the upper electrode.