Abstract:
In embodiment, the method includes cleaning a preceding substrate, and drying the preceding substrate and cleaning a next substrate. Drying the preceding substrate and cleaning the next substrate include determining a cleaning start time of the next substrate, and the cleaning start time corresponds to a desired time point after starting drying the preceding substrate.
Abstract:
Disclosed is a substrate processing system including a nozzle to supply a chemical solution containing a mixture of first and second solutions onto a substrate loaded on a supporter of a process chamber, a chemical solution supplying system to supply the chemical solution to the nozzle, and a controller to control the chemical solution supplying system. The chemical solution supplying system may include a mixing tank mixing a plurality of chemicals to produce the first solution, a supply tank receiving the first solution from the mixing tank and producing the chemical solution, a connection line to connect the mixing tank to the supply tank, and a valve and a pump on the connection line. The pump is controlled to allow the first solution to be supplied into the supply tank at a predetermined supply amount per stroke.
Abstract:
An etching composition includes about 1 wt % to about 7 wt % of hydrogen peroxide, about 20 wt % to about 80 wt % of phosphoric acid, about 0.001 wt % to about 1 wt % of an amine or amide polymer, 0 wt % to about 55 wt % of sulfuric acid, and about 10 wt % to about 45 wt % of deionized water.
Abstract:
A substrate treatment apparatus includes a seal on at least one of upper or lower chambers of a process chamber. The seal hermetically closes the substrate treatment region, and may be at a location to prevent a gap from forming between the upper and lower chambers. The lower chamber includes an inner wall and an outer wall defining a groove including the seal. The inner wall has a top surface lower than that of the outer wall. The seal has an atypical cross-sectional shape with a recess facing the substrate treatment region.
Abstract:
A substrate processing apparatus includes a processing chamber having an internal space and a substrate support within the internal space, a surface tension reducing agent supply system that supplies a surface tension reducing agent as a gas to the processing chamber, and a controller that controls the supply of the surface tension reducing agent via the surface tension reducing agent supply system. The surface tension reducing agent supply system includes at least one supply port that is configured to supply the surface tension reducing agent to the internal space and at least one discharge port that is configured to remove developer from the internal space.
Abstract:
A substrate treating apparatus and a method of treating a substrate, the apparatus including a substrate treater that treats a substrate using a chemical solution, the chemical solution including a phosphoric acid aqueous solution and a silicon compound; and a chemical solution supplier that supplies the chemical solution to the substrate treating unit, wherein the chemical solution supplier includes a concentration measurer that measures concentrations of the chemical solutions, the concentration measurer including a first concentration measurer that measures a water concentration of the chemical solution; and a second concentration measurer that measures a silicon concentration of the chemical solution.
Abstract:
A method of purifying a cleaning agent is provided. The method includes heating a first mixed solution including an etching agent, a first cleaning agent, and a second cleaning agent at or below a first temperature and distilling the etching agent and the first cleaning agent and removing the second cleaning agent. The method includes condensing or compressing the etching agent and the first cleaning agent forming a second mixed solution including the etching agent and the first cleaning agent. The method includes heating the second mixed solution at a temperature lower than a second temperature, redistilling the etching agent and extracting the first cleaning agent. The second temperature is lower than the first temperature.
Abstract:
A method of fabricating a semiconductor device includes forming a first layer including a first metal, forming a second layer including a second metal, the second layer being adjacent to the first layer, polishing top surfaces of the first and second layers, and cleaning the first and second layers using a cleaning solution. The cleaning solution may include an etching solution etching the first and second layers and an inhibitor suppressing the second layer from being over etched.
Abstract:
A substrate processing apparatus includes a chamber configure to provide a space for processing a substrate, a substrate support configured to support the substrate in the chamber, an upper supply port provided in an upper portion of the chamber and configured to supply a supercritical fluid on an upper surface of the substrate, a recess provided in an upper wall of the chamber and having a diffuser shape whose diameter gradually increases from an outlet of the upper supply port, and a fluidic baffle disposed in the recess between the upper supply port and the substrate and including unit cells repeatedly arranged in a space with same phases and geometric sizes and in fluid communication with each other.
Abstract:
A substrate processing apparatus includes a chamber including an upper chamber and a lower chamber coupled to each other to provide a space for processing a substrate, a substrate support configured to support the substrate within the chamber, an upper supply port provided in the upper chamber and configured to supply a supercritical fluid on an upper surface of the substrate within the chamber, a recess provided in a lower surface of the upper chamber, the recess including a horizontal extension portion extending in a direction parallel with the upper surface of the substrate in a radial direction from an outlet of the upper supply port and an inclined extension portion extending obliquely at an angle from the horizontal extension portion, and a baffle member disposed within the recess between the upper supply port and the substrate.