Abstract:
A three-dimensional semiconductor device is provided including main separation structures disposed on a substrate, and extending in a first direction, parallel to a surface of the substrate; gate electrodes disposed between the main separation structures; a first secondary separation structure penetrating through the gate electrodes, between the main separation structures, and including a first linear portion and a second linear portion, having end portions opposing each other; and second secondary separation structures disposed between the first secondary separation structure and the main separation structures, and penetrating through the gate electrodes. The second secondary separation structures have end portions opposing each other between the second linear portion and the main separation structures.
Abstract:
A vacuum cleaner having an improved structure capable of enhancing suction performance includes a suction unit provided in a main body, the suction unit including an impeller disposed to suck air by rotating about an axis thereof, and a diffuser disposed to guide air discharged from the impeller. The diffuser includes an inner casing, an outer casing disposed to be spaced apart from an outer circumference of the inner casing and to form a path through which the air discharged from the impeller flows, and a plurality of vanes disposed at the inner casing to guide the air discharged from the impeller to the path, and the plurality of vanes protrude toward the outer casing to cross at least a part of the path.
Abstract:
According to example embodiments, an optical measurement apparatus may include: a station configured to support a measurement target; an image acquisition unit configured to acquire a one-dimensional (1D) line image of the measurement target; a driver configured to move the station and the image acquisition unit; and a controller. The controller may be configured to control the driver and the image acquisition unit to acquire a plurality of 1D line images of the measurement target while varying a distance between the image acquisition unit and the measurement target to generate a two-dimensional (2D) scan image from combining the plurality of 1D line images; and to detect a pattern of the measurement target based on comparing a plurality of 2D reference images and the 2D scan image. The optical measurement apparatus may measure critical dimensions of non-repeating ultrafine patterns at high speed.
Abstract:
A vertical memory device includes a substrate having a peripheral circuit structure, first gate patterns having first gate pad regions stacked vertically from the substrate, vertical channel structures penetrating the first gate patterns, first gate contact structures each extending vertically to a corresponding first gate pad region, mold patterns stacked vertically from the substrate, the mold patterns each being positioned at the same height from the substrate with a corresponding gate pattern, peripheral contact structures penetrating the mold patterns to be connected to the peripheral circuit structure, a first, block separation structure disposed between the first gate contact structures and the peripheral contact structures, and a first peripheral circuit connection wiring extending across the first block separation structure to connect one of the first gate contact structures to one of the peripheral contact structures.
Abstract:
A memory device includes a plurality of gate electrode layers stacked on a substrate, a plurality of channel layers penetrating the plurality of gate electrode layers, a gate insulating layer between the plurality of gate electrode layers and the plurality of channel layers, and a common source line on the substrate adjacent to the gate electrode layers. The common source line includes a first part and a second part that are alternately arranged in a first direction and have different heights in a direction vertical to a top surface of the substrate. The gate insulating layer includes a plurality of vertical parts and a horizontal part. The plurality of vertical parts surrounds corresponding ones of the plurality of channel layers. The horizontal part extends parallel to a top surface of the substrate.
Abstract:
Disclosed herein are a motor assembly and a cleaner having the same. The motor assembly includes a rotor configured to rotate and a stator configured to electromagnetically interact with the rotor. The stator includes a pair of stator bodies disposed to be symmetrical to each other with the rotor in between, each stator body having at least two stator cores arranged in parallel to each other.
Abstract:
A cleaner includes a BLDC motor and a power unit. The BLDC motor includes a rotor and a stator provided with a DC coil and an AC coil in a separate manner. The power unit is configured to supply DC power and AC power to the DC coil and the AC coil, respectively.
Abstract:
A motor apparatus having a high efficiency and reducing manufacturing cost by using a cost effective ferrite permanent magnet includes a rotatable shaft, a fan connected to one side of the shaft to generate a flow of air, a stator including stator cores arranged in a circumferential direction, and a coil wound around the stator core, and a rotor disposed at an inside of the stator and provided in a form of a cylinder having a passage allowing the shaft to pass through the rotor includes a rotor core provided with a protrusion structure and one or more ferrite magnets coupled to the rotor core to provide a magnetic force. By using a ferrite magnet, when compared to a conventional universal motor, a superior efficiency is obtained, and when compared to a BLDC motor using a Nd magnet, a low cost BLDC motor is implemented.
Abstract:
According to example embodiments, an optical measurement apparatus may include: a station configured to support a measurement target; an image acquisition unit configured to acquire a one-dimensional (1D) line image of the measurement target; a driver configured to move the station and the image acquisition unit; and a controller. The controller may be configured to control the driver and the image acquisition unit to acquire a plurality of 1D line images of the measurement target while varying a distance between the image acquisition unit and the measurement target to generate a two-dimensional (2D) scan image from combining the plurality of 1D line images; and to detect a pattern of the measurement target based on comparing a plurality of 2D reference images and the 2D scan image. The optical measurement apparatus may measure critical dimensions of non-repeating ultrafine patterns at high speed.
Abstract:
An autofocus control apparatus includes a beam splitter, a condenser lens and a detector. The beam splitter directs light beams from a light source toward a sample and passes light beams reflected from the sample to the condenser lens. The condenser lens condenses the light beams, and the detector detects a focal point deviation of the sample relative to a focal point of the condenser lens. The focal point deviation is detected based on an intersection of a focal line passing through different focal points of the condenser lens and a light receiving plane configured to receive the light beams passing through the condenser lens.