Abstract:
A three-dimensional (3D) image sensor device and an electronic apparatus including the 3D image sensor device are provided. The 3D image sensor device includes: a shutter driver that generates a driving voltage of a sine wave biased with a first bias voltage, from a loss-compensated recycling energy; an optical shutter that varies transmittance of reflective light reflected from a subject, according to the driving voltage, and modulates the reflective light to generate at least two optical modulation signals having different phases; and an image generator that generates 3D image data for the subject which includes depth information calculated based on a phase difference between the at least two optical modulation signals.
Abstract:
A depth image acquisition apparatus and a method of acquiring depth information are provided. The method of acquiring depth information includes: sequentially projecting, to a subject, N different beams of light emitted from a light source for a time period including an idle time for each of the N different beams of transmitted light, where N is a natural number that is equal to or greater than 3; modulating, using a light modulation signal, beams of reflected light that are obtained by reflection of the N different beams from the subject; obtaining N phase images corresponding to the N different beams of light by capturing, using a rolling shutter method, the modulated beams of reflected light; and obtaining depth information by using the obtained N phase images.
Abstract:
Provided is an apparatus and method of recognizing a movement of a subject. The apparatus includes a light source configured to emit light to the subject and an image sensor configured to receive light reflected from the subject. The apparatus includes a processor configured to detect a pixel that is receiving the reflected light, the pixel being included in a pixel array of the image sensor. The processor is configured to track the movement of the subject based on a change in a position of the detected pixel.
Abstract:
An optical modulator is provided, including a lower reflection layer, an active layer formed on the lower reflection layer, and an upper reflection layer formed on the active layer. The active layer includes a multiple quantum well structure including a quantum well layer and a quantum barrier layer. The upper reflection layer includes a dielectric material. A plurality of micro cavity layers are included in the upper reflection layer.
Abstract:
Disclosed is a light modulating apparatus. The light modulating apparatus includes a pixel array including a plurality of pixels, a light modulating device that absorbs or transmit light incident on the pixel array according to an applied voltage, a flip-flop circuit that outputs a first voltage based on a device driving signal indicating a level of a second voltage applied to be applied to the light modulating device, and an amplifier that amplifies the first voltage to generate the second voltage and applies the second voltage to the light modulating device.
Abstract:
Provided are a transmission type high-absorption optical modulator and a method of manufacturing the transmission type high-absorption optical modulator. The optical modulator includes: a substrate; a lower distributed Bragg reflector (DBR) layer on the substrate; a lower clad layer on the lower DBR layer; an active layer that is formed on the lower clad layer and includes a quantum well layer and a quantum barrier layer; an upper clad layer on the active layer; an upper DBR layer on the upper clad layer; and a doping layer that supplies carriers to the quantum well layer. In the optical modulator, the doping layer may be included in the quantum barrier layer or in at least one of the upper and lower clad layers.
Abstract:
Provided are optical modulators and devices including the optical modulators. The optical modulator may include an optical modulation layer that includes a phase change material. A first electrode may be provided on a first surface of the optical modulation layer. A second electrode may be provided on a second surface of the optical modulation layer. A first phase controlling layer may be provided, the first electrode being disposed between the first phase controlling layer and the optical modulation layer. A second phase controlling layer may be provided, the second electrode being disposed between the second phase controlling layer and the optical modulation layer. Each of the first and the second phase controlling layers may have an optical thickness corresponding to an odd multiple of λ/4, where λ is a wavelength of incident light to be modulated by the optical modulator. The optical modulator may further include at least one reflective layer. The optical modulation layer may have a thickness of about 10 nm or less. An operating voltage of the optical modulator may be about 10 V or less.
Abstract:
Provided is an optical device including an active layer, which includes two outer barriers and a coupled quantum well between the two outer barriers. The coupled quantum well includes a first quantum well layer, a second quantum well layer, a third quantum well layer, a first coupling barrier between the first quantum well layer and the second quantum well layer, and a second coupling barrier between the second quantum well layer and the third quantum well layer. The second quantum well layer is between the first quantum well layer and the third quantum well layer. An energy band gap of the second quantum well layer is less than an energy band gap of the first quantum well layer, and an energy band gap of the third quantum well layer is equal to or less than the energy band gap of the second quantum well layer.
Abstract:
A time of flight (ToF) measuring apparatus and an image processing method for reducing blur of a depth image in the ToF measuring apparatus are provided. The apparatus senses infrared (IR) light reflected by a subject and incident via an optical shutter, models a spread characteristic of the IR light based on an intensity distribution of the sensed IR light, and acquires a sharpening filter by using the modeled spread characteristic.
Abstract:
An edge emitting laser light source and a three-dimensional (3D) image obtaining apparatus including the edge emitting laser light source are provided. The edge emitting laser light source includes a substrate; an active layer disposed on the substrate; a wavelength selection section comprising grating regions configured to select wavelengths of light emitted from the active layer; and a gain section configured to resonate the light having the selected wavelengths in a direction parallel with the active layer.