Abstract:
A method is provided to control a hybrid powertrain to achieve a desired engine speed in a combustion engine, said powertrain comprising: a gearbox with input and output shafts with the combustion engine connected to the input shaft; a first planetary gear connected to the input shaft and a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; first and second electrical machines respectfully connected to the first and second planetary gears; first gear pair connected with the first main shaft; and second gear pair connected with the second main shaft. The method comprises a) ensuring that two rotatable components in the first planetary gear are connected; b) ensuring that all rotatable components in the second planetary gear are disconnected; c) ensuring that a gear is engaged in the first gear pair, d) ensuring that the second gear pair is disconnected; e) controlling the second electrical machine so that a desired torque is achieved in the output shaft; f) controlling the combustion engine to a desired engine speed; and g) controlling the first electrical machine so that a desired total power consumption for the first and the second electrical machines is achieved.
Abstract:
A hybrid powertrain that includes a combustion engine (4) and a gearbox (2) with an input shaft (8) and an output shaft (20); a first planetary gear (10) connected to the input shaft (8); a second planetary gear (12) connected to the first planetary gear (10); a first electrical machine (14) connected to the first planetary gear (10); a second electrical machine (16) connected to the second planetary gear (12); at least one gear pair (G1, 60, 72) connected to the first planetary gear (10) and to the output shaft (20); and at least one gear pair (G2, 66, 78) connected to the second planetary gear (12) and to the output shaft (20), a countershaft (18) provided between the combustion engine (4) and the gearbox (2) so that the engine (4) can be disconnected from the gearbox (2). Also disclosed is a method for controlling the disclosed hybrid powertrain (3). Also a vehicle (1) includes such a gearbox (2), and a method to control such a gearbox (2). Also a computer program (P) to control a gearbox.
Abstract:
A hybrid powertrain that includes a combustion engine (4); a gearbox (2) with an input shaft (8) and an output shaft (20); a first planetary gear (10) connected to the input shaft (8) a second planetary gear (12) connected to the first planetary gear (10); a first electrical machine (14) connected to the first planetary gear (10); a second electrical machine (16) connected to the second planetary gear (12); a first gear pair (G1, 60) and a third gear pair (G1, 72) situated between the first planetary gear (10) and the output shaft (20); and a second gear pair (66) and a fourth gear pair (G2, 78) situated between the second planetary gear (12) and the output shaft (20); a countershaft (18) provided between the respective first and the second planetary gears (10, 12) and the output shaft (2), and (18) connected to the output shaft (20) via a fifth gear pair (G3M 21). Also, disclosed is a method for controlling the hybrid powertrain. Also a method for controlling a hybrid powertrain (3) and a computer programme (P) for controlling the hybrid powertrain (3).
Abstract:
A method for obtaining gear shifting of a vehicle, where the vehicle has a planetary gearing in the drive train, a combustion engine with an output shaft connected to a rotor of a second electric machine and to a first component of the planetary gearing, a first electric machine with a rotor connected to a third component of the planetary gearing and an input shaft of a gearbox connected to a second component of the planetary gearing. The method is started with the components of the planetary gearing interlocked by a locking means, in which they are released during the gear shifting and interlocked again after the gear shifting has been carried out.
Abstract:
The present invention relates to a method for switching power supply path of at least one electrical machine, said electrical machine being arranged to be selectively supplied power by a first power supply path and a second power supply path, respectively, by alternately opening and closing said power supply paths, said first and second power supply paths being arranged to connect a power supply source to a first connection terminal means of said electrical machine. The method includes, when switching from said first power supply path to said second power supply path: opening said first power supply path; by means of said electrical machine, controlling a terminal voltage of said first connection terminal means to substantially a power supply voltage of said second power supply path; and closing said second power supply path.
Abstract:
A method is provided for moving off of a vehicle with a hybrid drive line, comprising a combustion engine; a gearbox with input shaft connected to the combustion engine and output shaft; a first planetary gear, which is connected to the input shaft, a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; a first and second electrical machines respectively connected to the first and second planetary gears; a gear pair connected with the first main shaft; and a gear pair connected with the second main shaft. The method comprises: a) ensuring that the rotatable components of the first and second planetary gears are respectively disconnected from each other, b) ensuring that the corresponding gear pairs are engaged, and c) activating the first and second electrical machines so that a torque is generated in the output shaft.
Abstract:
In a method for controlling a vehicle with a drive system comprising a power unit configuration adapted to provide output for the vehicle's operation, and further comprising a planetary gear and a first and second electrical machine, connected to components in the planetary gear via their rotors, a locking means is moved from a locked position, in which two of the planetary gear's components are locked together, so that the three components of the planetary gear rotate with the same speed, to a release position, when the vehicle is driven with the locking means in a locked position, by carrying out the following method steps. The power unit configuration is controlled in order to achieve torque balance between the components that are locked together by the locking means, and such locking means are moved into a release position, when said torque balance prevails.
Abstract:
In a method for controlling a vehicle with a drive system comprising a power unit configuration adapted to provide power for the vehicle's operation, and further comprising a planetary gear and a first and second electrical machine, connected to components in the planetary gear via their rotors, a locking means is moved from a release position, in which the planetary gear's components are free to rotate independently of each other, to a locked position, in which two of the planetary gear's components are locked together, so that the three components in the planetary gear rotate with the same speed. The power unit configuration is controlled in order to achieve a synchronous, or substantially synchronous, rotational speed between the input and output shaft of the planetary gear, and the locking means are then moved to the locked position.
Abstract:
A gearbox that includes an input shaft (8) and an output shaft (20); a first epicyclic gear (10) that is connected to the input shaft (8); a second epicyclic gear (12) that is connected to the first epicyclic gear (10); a first electrical machine (14) that is connected to the first epicyclic gear (10); a second electrical machine (16) that is connected to the second epicyclic gear (12); a first gear pair (60) that is arranged between the first epicyclic gear (10) and the output shaft (20); and a second gear pair (66) that is arranged between the second epicyclic gear (12) and the output shaft (20). A side shaft (18) is arranged between one of the epicyclic gears (10, 12) and the output shaft (20) (18) and connected to the output shaft (20) through a final gear, (21) (21) which includes a gear element (92), that is arranged at the side shaft (18) in a disengagable manner. Also, disclosed is a method for controlling the gearbox. Also a vehicle (1) that includes such a gearbox (2), and a method to control such a gearbox (2). Also a computer program (P) to control a gearbox (2).
Abstract:
A gearbox having an input shaft (8) and an output shaft (20); a first epicyclic gear (10) connected to the input shaft (8); a second epicyclic gear (12) connected to the first epicyclic gear (10); a first electrical machine (14) connected to the first epicyclic gear (10); a second electrical machine (16) connected to the second epicyclic gear (12); a first main shaft (34) connected to the first epicyclic gear (10); a second main shaft (36) connected to the second epicyclic gear (12). A first coupling unit (56) disengagingly connects two rotatable components (22, 26, 50) at the first epicyclic gear (10), and a second coupling unit (58) disengagingly connects two rotatable components (28, 32, 51) at the second epicyclic gear (12), such that at least one of the rate of revolution and the torque at the first and the second main shafts (34, 36) can be influenced by controlling at least one of the first and the second coupling units (56, 58) to a condition of the rotatable components (22, 26, 50; 28, 32, 51) that is engaged or disengaged. Also a vehicle (1) having such a gearbox (2), a method to control such a gearbox (2), a computer program (P) to control a gearbox, and a computer program product comprising program code for an electronic control unit (48) or another computer (53) in order to implement the method.