PROCESS FOR A 3-DIMENSIONAL ARRAY OF HORIZONTAL NOR-TYPE MEMORY STRINGS

    公开(公告)号:US20210013224A1

    公开(公告)日:2021-01-14

    申请号:US16924531

    申请日:2020-07-09

    Abstract: In the highly efficient fabrication processes for HNOR arrays provided herein, the channel regions of the storage transistors in the HNOR arrays are protected by a protective layer after deposition until the subsequent deposition of a charge-trapping material before forming local word lines. Both the silicon for the channel regions and the protective material may be deposited in amorphous form and are subsequently crystallized in an anneal step. The protective material may be silicon boron, silicon carbon or silicon germanium. The protective material induces greater grain boundaries in the crystallized silicon in the channel regions, thereby providing greater charge carrier mobility, greater conductivity and greater current densities.

    Fabrication method for a 3-dimensional NOR memory array

    公开(公告)号:US10741581B2

    公开(公告)日:2020-08-11

    申请号:US16510610

    申请日:2019-07-12

    Abstract: A process for manufacturing a 3-dimensional memory structure includes: (a) providing one or more active layers over a planar surface of a semiconductor substrate, each active layer comprising (i) first and second semiconductor layers of a first conductivity; (ii) a dielectric layer separating the first and second semiconductor layer; and (ii) one or more sacrificial layers, at least one of sacrificial layers being adjacent the first semiconductor layer; (b) etching the active layers to create a plurality of active stacks and a first set of trenches each separating and exposing sidewalls of adjacent active stacks; (c) filling the first set of trenches by a silicon oxide; (d) patterning and etching the silicon oxide to create silicon oxide columns each abutting adjacent active stacks and to expose portions of one or more sidewalls of the active stacks; (e) removing the sacrificial layers from exposed portions of the sidewalls by isotropic etching through the exposed portions of the sidewalls of the active stacks to create corresponding cavities in the active layers; (f) filling the cavities in the active stacks by a metallic or conductor material; (g) recessing the dielectric layer from the exposed sidewalls of the active stacks; and (h) filling recesses in the dielectric layer by a third semiconductor layer of a second conductivity opposite the first conductivity.

    Process for preparing a channel region of a thin-film transistor in a 3-dimensional thin-film transistor array

    公开(公告)号:US11844204B2

    公开(公告)日:2023-12-12

    申请号:US18050937

    申请日:2022-10-28

    Abstract: A process includes (a) providing a semiconductor substrate having a planar surface; (b) forming a plurality of thin-film layers above the planar surface of the semiconductor substrate, one on top of another, including among the thin-film layers first and second isolation layers, wherein a significantly greater concentration of a first dopant specie is provided in the first isolation layer than in the second isolation layer; (c) etching along a direction substantially orthogonal to the planar surface through the thin-films to create a trench having sidewalls that expose the thin-film layers; (d) depositing conformally a semiconductor material on the sidewalls of the trench; (e) annealing the first isolation layer at a predetermined temperature and a predetermined duration such that the first isolation layer act as a source of the first dopant specie which dopes a portion of the semiconductor material adjacent the first isolation layer; and (f) selectively etching the semiconductor material to remove the doped portion of the semiconductor material without removing the remainder of the semiconductor material.

    PROCESS FOR A 3-DIMENSIONAL ARRAY OF HORIZONTAL NOR-TYPE MEMORY STRINGS

    公开(公告)号:US20230157019A1

    公开(公告)日:2023-05-18

    申请号:US17527972

    申请日:2021-11-16

    CPC classification number: H01L27/11578 H01L27/11551

    Abstract: In the highly efficient fabrication processes for HNOR arrays provided herein, the channel regions of the storage transistors in the HNOR arrays are protected by a protective layer after deposition until the subsequent deposition of a charge-trapping material before forming local word lines. Both the silicon for the channel regions and the protective material may be deposited in amorphous form and are subsequently crystallized in an anneal step. The protective material may be silicon boron, silicon carbon or silicon germanium. The protective material induces greater grain boundaries in the crystallized silicon in the channel regions, thereby providing greater charge carrier mobility, greater conductivity and greater current densities.

Patent Agency Ranking