Abstract:
A substrate processing apparatus includes: a processing vessel configured to be vacuumed; a holding unit configured to hold a plurality of substrates and to be inserted into or separated from the processing vessel; a gas supply unit configured to supply gas into the processing vessel; a plasma generation box partitioned and formed by a plasma partition wall; an inductively coupled electrode located at an outer sidewall of the plasma generation box along its length direction; a high frequency power supply connected to the inductively coupled electrode through a feed line; and a ground electrode located outside the plasma generation box and between the processing vessel and the inductively coupled electrode and arranged in the vicinity of the outer sidewall of the plasma generation box or at least partially in contact with the outer sidewall.
Abstract:
A method of operating vertical heat treatment apparatus includes: cleaning interior of vertical reaction chamber by supplying cleaning gas; pre-coating the interior of the reaction chamber by performing, a plurality of times, a cycle including alternately supplying the first gas and supplying the second gas while generating plasma from the second gas; eliminating charges by loading substrate holding unit holding a dummy semiconductor substrate or a conductive substrate into the reaction chamber and supplying the second gas while generating plasma from the second gas without supplying the first gas; loading the substrate holding unit holding a plurality of product semiconductor substrates into the reaction chamber; and forming thin film in the reaction chamber by performing, a plurality of times, a cycle including alternately supplying the first gas and supplying the second gas while generating plasma from the second gas.
Abstract:
A film forming method for forming a silicon film on a substrate, includes preparing a substrate having a first film and a second film on a surface thereof, supplying a growth inhibiting gas that inhibits growth of the silicon film to the substrate, to cause physical adsorption of the growth inhibiting gas on the first film, and forming the silicon film on the first film and on the second film by supplying a silane-based gas having a silicon number 1 to the substrate having the growth inhibiting gas physically adsorbed on the first film.
Abstract:
A method for manufacturing a semiconductor device includes supplying a silicon-containing gas to a substrate having a recess formed in a surface of the substrate to deposit a silicon film in the recess, supplying, to the substrate, a first etching gas having a first etching profile in which an amount of etching for an upper portion of the recess in a depth direction and an amount of etching for a lower portion of the recess in the depth direction are different from each other, to etch the silicon film in the recess, supplying, to the substrate, a second etching gas having a second etching profile that is different from the first etching profile of the first etching gas to etch the silicon film in the recess, and additionally depositing the silicon film on the already deposited silicon film etched by the second etching gas.
Abstract:
A film forming method includes: forming a laminated film, in which an interface layer, a bulk layer, and a surface layer are laminated in this order, on a base; and crystallizing the laminated film, wherein the bulk layer is formed of a film that is easier to crystallize than the interface layer in crystallizing the laminated film, and wherein the surface layer is formed of a film that is easier to crystallize than the bulk layer in crystallizing the laminated film.
Abstract:
An operating method of a vertical heat treatment apparatus which performs a film forming process by keeping the interior of a vertical reaction tube surrounded by a heating mechanism at a vacuum atmosphere and by supplying film forming gases to substrates accommodated within the reaction tube, includes: performing a film forming process with respect to the substrates by carrying a substrate holder holding a plurality of substrates in a shelf form into the reaction tube; carrying out the substrate holder from the reaction tube; and carrying a cooling jig into the reaction tube to cool an inner wall of the reaction tube so as to peel a thin film adhering to the inner wall of the reaction tube by a thermal stress and so as to collect the thin film in the cooling jig by thermophoresis.
Abstract:
A driving method of a vertical heat treatment apparatus having a vertical reaction container with a heating part installed includes: performing a process of loading wafers by a substrate holder support to the reaction container; performing a film forming process of storing a first gas at a storage unit and pressurizing the first gas, and alternatively performing a step of supplying the first gas to the vacuum atmosphere reaction container and a step of supplying the second gas to the reaction container; subsequently performing a purge process of unloading the substrate holder support and supplying a purge gas into the reaction container to forcibly peel off a thin film attached to the reaction container; and while the purge process is performed, performing a process of repeating storing the purge gas at the storage unit, pressurizing the gas and discharging the gas into the reaction container.