摘要:
According to one embodiment, a semiconductor light emitting device includes first and second conductive layers, a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting part. The second semiconductor layer is provided between the first conductive layer and the first semiconductor layer. The light emitting part is provided between the first and second semiconductor layers. The second conductive layer is in contact with the second semiconductor layer and the first conductive layer between the second semiconductor layer and the first conductive layer. The first and second conductive layers are transmittable to light emitted from the light emitting part. The first conductive layer includes a polycrystal having a first average grain diameter. The second conductive layer includes a polycrystal having a second average grain diameter of 150 nanometers or less and smaller than the first average grain diameter.
摘要:
According to one embodiment, a semiconductor light-emitting device using an ITON layer for a transparent conductor and realizing low drive voltage, high luminance efficiency, and uniformed light emission intensity distribution is provided. The semiconductor light-emitting device includes: a substrate; an n-type semiconductor layer formed on the substrate; an active layer formed on the n-type semiconductor layer; a p-type semiconductor layer formed on the active layer and whose uppermost part is a p-type GaN layer; an ITON (Indium Tin Oxynitride) layer formed on the p-type GaN layer; an ITO (Indium Tin Oxide) layer formed on the ITON layer; a first metal electrode formed on a part on the ITO layer; and a second metal electrode formed in contact with the n-type semiconductor layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting unit, a second semiconductor layer, a reflecting electrode, an oxide layer and a nitrogen-containing layer. The first semiconductor layer is of a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The second semiconductor layer is provided on the light emitting unit and is of a second conductivity type. The reflecting electrode is provided on the second semiconductor layer and includes Ag. The oxide layer is provided on the reflecting electrode. The oxide layer is insulative and has a first opening. The nitrogen-containing layer is provided on the oxide layer. The nitrogen-containing layer is insulative and has a second opening communicating with the first opening.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer, a light emitting layer, a dielectric layer, a first electrode, a second electrode and a support substrate. The first layer has a first and second surface. The second layer is provided on a side of the second surface of the first layer. The emitting layer is provided between the first and the second layer. The dielectric layer contacts the second surface and has a refractive index lower than that of the first layer. The first electrode includes a first and second portion. The first portion contacts the second surface and provided adjacent to the dielectric layer. The second portion contacts with an opposite side of the dielectric layer from the first semiconductor layer. The second electrode contacts with an opposite side of the second layer from the emitting layer.
摘要:
According to one embodiment, a semiconductor light-emitting device using an ITON layer for a transparent conductor and realizing low drive voltage, high luminance efficiency, and uniformed light emission intensity distribution is provided. The semiconductor light-emitting device includes: a substrate; an n-type semiconductor layer formed on the substrate; an active layer formed on the n-type semiconductor layer; a p-type semiconductor layer formed on the active layer and whose uppermost part is a p-type GaN layer; an ITON (Indium Tin Oxynitride) layer formed on the p-type GaN layer; an ITO (Indium Tin Oxide) layer formed on the ITON layer; a first metal electrode formed on a part on the ITO layer; and a second metal electrode formed in contact with the n-type semiconductor layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer, a light emitting layer, a dielectric layer, a first electrode, a second electrode and a support substrate. The first layer has a first and second surface. The second layer is provided on a side of the second surface of the first layer. The emitting layer is provided between the first and the second layer. The dielectric layer contacts the second surface and has a refractive index lower than that of the first layer. The first electrode includes a first and second portion. The first portion contacts the second surface and provided adjacent to the dielectric layer. The second portion contacts with an opposite side of the dielectric layer from the first semiconductor layer. The second electrode contacts with an opposite side of the second layer from the emitting layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, an electrode, a p-type semiconductor layer and a light emitting layer. The p-type semiconductor layer is provided between the n-type semiconductor layer and the electrode and includes a p-side contact layer contacting the electrode. The light emitting layer is provided between the n-type and the p-type semiconductor layers. The p-side contact layer includes a flat part having a plane perpendicular to a first direction from the n-type semiconductor layer toward the p-type semiconductor layer and multiple protruding parts protruding from the flat part toward the electrode. A height of the multiple protruding parts along the first direction is smaller than one-fourth of a dominant wavelength of light emitted from the light emitting layer. A density of the multiple protruding parts in the plane is 5×107/cm2 or more and 2×108/cm2 or less.
摘要翻译:根据一个实施例,半导体发光器件包括n型半导体层,电极,p型半导体层和发光层。 p型半导体层设置在n型半导体层和电极之间,并且包括与电极接触的p侧接触层。 发光层设置在n型和p型半导体层之间。 p侧接触层包括具有垂直于从n型半导体层朝向p型半导体层的第一方向的平面的平坦部分和从平坦部分向电极突出的多个突出部分。 沿着第一方向的多个突出部分的高度小于从发光层发射的光的主波长的四分之一。 平面内的多个突出部的密度为5×10 7 / cm 2以上2×10 8 / cm 2以下。
摘要:
A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed at a distance from each other in the semiconductor substrate; a first insulating film formed on a portion of the semiconductor substrate, the portion being located between the source region and the drain region; a charge storage film formed on the first insulating film; a second insulating film formed above the charge storage film and made of a high-permittivity material; a control gate electrode formed above the second insulating film; and a silicon nitride layer including nitrogen atoms having three-coordinate nitrogen bonds, at least one of second-nearest neighbor atoms of the nitrogen atoms being a nitrogen atom. At least one of the charge storage film and the control gate electrode contains silicon, the silicon nitride layer is located between the second insulating film and the at least one of the charge storage film and the control gate electrode.
摘要:
A honeycomb structure includes a porous silicon carbide honeycomb fired body and a silicon-containing oxide layer. The porous silicon carbide honeycomb fired body has at least one cell wall defining a plurality of cells extending along a longitudinal direction of the silicon carbide honeycomb fired body. The plurality of cells is provided in parallel with one another. The silicon carbide honeycomb fired body contains silicon carbide particles. The silicon-containing oxide layer is provided on a surface of each of the silicon carbide particles. The silicon-containing oxide layer has a thickness of from about 5 nm to about 100 nm measured with an X-ray photoelectron spectroscopy.
摘要:
In order to adjust the optical axis of a light beam L1 in an exposure apparatus, on a support body in an XYZ three-dimensional coordinate system are mounted: a first mirror 10 having a reflective surface M1 obtained by rotating a plane parallel to the XY plane around an axis 11 parallel to the Y axis by an angle of α; and a second mirror 20 having a reflective surface M2 obtained by rotating a plane parallel to the XZ plane around an axis 21 parallel to the X axis by an angle of β. There are provided: position adjustment means for moving the entire support body having the two mirrors parallel to the XY plane; and angle adjustment means for adjusting the angle of the second mirror 20. The incident light L1 is reflected on the reflective surfaces M1 and M2 to be output as an outgoing light L3, where it is possible to perform an optical axis adjustment concerning position and angle by controlling the position adjustment means and the angle adjustment means.