Abstract:
A method of fabricating a gate cap layer includes providing a substrate with an interlayer dielectric disposed thereon, wherein a recess is disposed in the interlayer dielectric and a metal gate fills in a lower portion of the recess. Later, a cap material layer is formed to cover the interlayer dielectric and fill in an upper portion of the recess. After that, a first sacrifice layer and a second sacrifice layer are formed in sequence to cover the cap material layer. The first sacrifice layer has a composition different from a composition of the cap material layer. The second sacrifice layer has a composition the same as the composition of the cap material layer. Next, a chemical mechanical polishing process is preformed to remove the second sacrifice layer, the first sacrifice layer and the cap material layer above a top surface of the interlayer dielectric.
Abstract:
A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.
Abstract:
A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.
Abstract:
A method of fabricating a gate cap layer includes providing a substrate with an interlayer dielectric disposed thereon, wherein a recess is disposed in the interlayer dielectric and a metal gate fills in a lower portion of the recess. Later, a cap material layer is formed to cover the interlayer dielectric and fill in an upper portion of the recess. After that, a first sacrifice layer and a second sacrifice layer are formed in sequence to cover the cap material layer. The first sacrifice layer has a composition different from a composition of the cap material layer. The second sacrifice layer has a composition the same as the composition of the cap material layer. Next, a chemical mechanical polishing process is preformed to remove the second sacrifice layer, the first sacrifice layer and the cap material layer above a top surface of the interlayer dielectric.
Abstract:
The present invention provides a manufacturing method for forming a semiconductor structure, in which first, a substrate is provided, a hard mask is disposed on the substrate, the hard mask is then patterned to form a plurality of fin hard masks and a plurality of dummy fin hard masks, afterwards, a pattern transferring process is performed, to transfer the patterns of the fin hard masks and the fin hard masks into the substrate, so as to form a plurality of fin groups and a plurality of dummy fins. Each dummy fin is disposed on the end side of one fin group, and a fin cut process is performed, to remove each dummy fin.
Abstract:
A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.
Abstract:
A method of fabricating a semiconductor structure is provided. A substrate surface is provided and a first layer is disposed on the substrate surface. A second layer covering the first layer is formed wherein the materials of the first layer and the second layer are different. A first polishing operation is performed on the second layer until a first polished surface exposing a portion of the first layer is obtained. A second polishing operation is performed on the first polished surface to obtain a second polished surface wherein an upper portion of the exposed portion of the first layer is removed. None of the substrate is exposed from the first polished surface and the second polished surface.
Abstract:
A method of manufacturing a semiconductor structure is provided. First, a preliminary structure is provided. The preliminary structure has a first region and a second region, and the preliminary structure comprises a plurality of features in the first region. Then, a first polish stop layer is formed on the preliminary structure. The first polish stop layer comprises a concave portion in the second region, and the concave portion defines an opening. A first overlying layer is formed on the first polish stop layer. Thereafter, a second polish stop layer is formed on the first overlying layer. The second polish stop layer has a graduated change in composition. The second polish stop layer comprises a concave portion at least partially formed in the opening. A second overlying layer is formed on the second polish stop layer.
Abstract:
A method for repairing an oxide layer and a method for manufacturing a semiconductor structure applying the same are provided. The method for repairing an oxide layer comprises following steps. First, a carrier having a first area and a second area is provided, wherein a repairing oxide layer is formed on the second area. Then, the carrier is attached to a substrate with an oxide layer to be repaired formed thereon, wherein the carrier and the substrate are attached to each other through the repairing oxide layer and the oxide layer to be repaired. Thereafter, the oxide layer to be repaired is bonded with the repairing oxide layer.
Abstract:
The present invention provides a manufacturing method for forming a semiconductor structure, in which first, a substrate is provided, a hard mask is disposed on the substrate, the hard mask is then patterned to form a plurality of fin hard masks and a plurality of dummy fin hard masks, afterwards, a pattern transferring process is performed, to transfer the patterns of the fin hard masks and the fin hard masks into the substrate, so as to form a plurality of fin groups and a plurality of dummy fins. Each dummy fin is disposed on the end side of one fin group, and a fin cut process is performed, to remove each dummy fin.