摘要:
The present invention provides magnesium zinc oxide (MgxZn1-xO) as a new piezoelectric material, which is formed by alloying ZnO and MgO. MgxZn1-xO allows for flexibility in thin film SAW and BAW device design, as its piezoelectric properties can be tailored by controlling the Mg content, as well as by using MgxZn1-xO/ZnO multilayer structures. To experimentally prove it, the MgxZn1-xO (x≦0.35) thin films are grown on r-plane sapphire substrates at a temperature in the range of 400° C.-500° C. by metalorganic chemical vapor deposition. MgxZn1-xO films with Mg mole percent up to 0.35 have epitaxial quality and wurtzite crystal structure. The SAW properties, including velocity dispersion and piezoelectric coupling, are characterized and concluded that the acoustic velocity increases, whereas the piezoelectric coupling decreases with increasing Mg mole percent in piezoelectric MgxZn1-xO films.
摘要:
A vertically integrated reconfigurable and programmable diode/memory resistor (1D1R) and thin film transistor/memory resistor (1T1R) structures built on substrates are disclosed.
摘要:
A method and apparatus for creating and detecting an optically encoded document having a uniquely designed document verification indicator is disclosed. One embodiment includes applying a spatially varying Brewster angle pattern on a substrate. Another embodiment includes an apparatus for detecting the spatially varying Brewster angle pattern including a light source, a slit aperture, a polarizer, at least one parabolic mirror, and an image capturing device.
摘要:
In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
摘要翻译:在本发明中,提供了半导体器件,例如在n型ZnO和Mg x 1 Zn 1-x O O外延膜上制造的肖特基UV光电探测器。 ZnO和Mg x Zn 1-x O薄膜生长在R平面蓝宝石衬底上,肖特基二极管制造在ZnO和Mg < 分别使用银和铝作为肖特基和欧姆接触金属的ZnO 1-x O O膜。 肖特基二极管具有圆形图案,其中内圆是肖特基接触,外环是欧姆接触。 Ag肖特基接触图案使用标准剥离技术制造,而Al欧姆接触图案是使用湿化学蚀刻法形成的。 与其感光对手相比,这些检测器显示低频光响应,高速光响应,较低的漏电流和低噪声性能。 本发明还可应用于光学调制器,金属半导体场效应晶体管(MESFET)等。
摘要:
The present invention provides the multifunctional biological and biochemical sensor technology based on the integration of ZnO nanotips with bulk acoustic wave (BAW) devices, particularly, quartz crystal microbalance (QCM) and thin film bulk acoustic wave resonator (TFBAR). ZnO nanotips provide giant effective surface area and strong bonding sites. Furthermore, the controllable wettability of ZnO nanostructured surface dramatically reduces the liquid consumption and enhances the sensitivity of the biosensor device.
摘要:
ZnO nanostructure-based LEDs are provided to improve the emission efficiency. The devices include several configurations. Single crystal ZnO or MgxZn1−xO nanotips are grown on the top of a GaN p-n junction. Also, n-type ZnO nanotips are grown on p-GaN film to form an n-type ZnO nanotip/p-GaN heterojunction LED. A ZnO LED can be formed when depositing n-type ZnO nanotips on a p-type ZnO film layer. The ZnO nanotips, with a p-n junction in the tips, can be grown on glass for a low cost nano-LED, and can be grown on Si substrates to form an integrated ZnO nanoLED array on Si chips.
摘要翻译:提供基于ZnO纳米结构的LED以提高发射效率。 这些设备包括几种配置。 在GaN p-n结的顶部生长单晶ZnO或Mg x Zn 1-x O O纳米尖端。 此外,n型ZnO纳米尖端在p-GaN膜上生长以形成n型ZnO纳米尖/ p-GaN异质结LED。 当在p型ZnO膜层上沉积n型ZnO纳米尖端时,可以形成ZnO LED。 在尖端具有p-n结的ZnO纳米尖端可以在玻璃上生长用于低成本的纳米LED,并且可以在Si衬底上生长以在Si芯片上形成集成的ZnO纳米LED阵列。
摘要:
In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
摘要翻译:在本发明中,提供了半导体器件,例如在n型ZnO和Mg x 1 Zn 1-x O O外延膜上制造的肖特基UV光电探测器。 ZnO和Mg x Zn 1-x O薄膜生长在R平面蓝宝石衬底上,肖特基二极管制造在ZnO和Mg < 分别使用银和铝作为肖特基和欧姆接触金属的ZnO 1-x O O膜。 肖特基二极管具有圆形图案,其中内圆是肖特基接触,外环是欧姆接触。 Ag肖特基接触图案使用标准剥离技术制造,而Al欧姆接触图案是使用湿化学蚀刻法形成的。 与其感光对手相比,这些检测器显示低频光响应,高速光响应,较低的漏电流和低噪声性能。 本发明还可应用于光学调制器,金属半导体场效应晶体管(MESFET)等。
摘要:
A ZnO monolithically integrated tunable surface acoustic wave (MITSAW) device uses tunable acousto-electric and acouso-optic interaction between surface acoustic waves (SAW) and a two dimensional electron gas (2DEG) in a ZnO/MgxZn1−xO quantum well. The high electromechanical coupling coefficients of piezoelectric ZnO in conjunction with the low acoustic loss and high velocity of sapphire (Al2O3) offers high frequency and low loss RF applications. The 2DEG interacts with the lateral electric field resulting in ohmic loss which attenuates and slows the surface acoustic wave. This mechanism is used to tune the acoustic velocity. The high coupling coefficients offered by the ZnO/R—(Al2O3) systems allows large velocity tuning. Combined with the optical characteristics of the wide and direct band gap (about 3.3 eV) semiconductor and transparent ZnO electrodes, the MITSAW chip can be used for UV optical signal processing. R-plane sapphire is chosen instead of the popular C-plane substrate, as this substrate provides in-plane anisotropy in the ZnO layer. ZnO MITSAW technology not only improves existing devices but also develops many important application areas, such as tunable/adaptive filters, voltage-controlled oscillators, zero-power remote wireless sensors, and fixed and tunable UV optical delay lines.
摘要:
A novel programmable SAW filter with switchable multi-element interdigital transducers (IDTs) controlled by a microprocessor or a computer is provided that realizes the tunability of both center frequency and bandwidth of the SAW filter. The filter possesses the feature of the programmability of both center frequency and 3 dB bandwidth. As an example design, the center frequency of the SAW filter ranges from 126.8 MHz to 199.1 MHz while the 3 dB bandwidth ranges from 18.8 MHz to 58.9 MHz. The multi-input configuration increases the programmability of the device and improves insertion loss. A matching network for the programmable SAW filter further improves insertion loss level and stopband attenuation. A resistance weighting method has been applied to improve in band ripple with the passband ripple being reduced from 6.44 dB to 1.37 dB after resistance weighting. The prototype of programmable SAW filter simplifies the device structure and fabrication process by eliminating the tap weighting and summing circuits, resulting in a smaller device and lower costs. Moreover, frequency response shaping is realized without apodization.
摘要:
An optical system comprises two optical paths P1, P2, and an optical path changer for changing the optical length of the two optical paths. The optical path changer includes two phase modulators M1, M2 one coupled to each of the paths. A driving system is configured to apply power to the phase modulators to drive them in the same direction and to change the power applied to the phase modulators in opposite directions so as to change the length of each optical path in a different direction. As a result, the relationship between the changes in the power applied to the phase modulators and the resulting changes in the phase of light beams passing through the optical system becomes substantially linear.