Abstract:
A method for detecting a slope of a surface of an information record medium in an apparatus for detecting/writing information using one or a plurality of probes from/in the information record medium. The surface of the information record medium is scanned using the probe. The information from the surface of the information record medium is detected through the probe when the scanning is executed, and the slope of the surface of the information record medium is detected on the basis of the detected information.
Abstract:
A method of driving a device having a pair of electrodes and organic insulating layer sandwiched therebetween. The device exhibits at least three states of different electroconductivities in response to an applied voltage. A transition from the first state to the second state is achieved by applying a voltage within a first predetermined range to the device in the first state, and a transition from the second state to the third state is achieved by applying a voltage within a second predetermined range to the device in the second state.
Abstract:
A microprobe is provided which comprises a single crystal provided on a part of one main surface of a substrate or a part of a thin film formed on one main surface of the substrate. The microprobe may have a single crystal having an apex portion surrounded by facets having a specific plane direction and comprising a specific crystal face. The method for preparing the microprobe and an electronic device employing the microprobe also provided which is useful for recording and reproducing.
Abstract:
A scanning tunnel-current-detecting device comprising at least two probe electrodes supported by a supporting member, a means for placing a sample in proximity to the probe electrodes, a means for applying voltage between the probe electrodes and the sample, at least one of the probe electrodes being provided with a mechanism for measuring and compensating variation of the distance between the supporting member and the sample, is provided.
Abstract:
Provided is an X-ray generator including an electron passage in an electron-passage forming member; and a target on an insulative substrate. The transmission X-ray generator irradiates the target with electrons that have passed through the electron passage to generate X-rays. The target is provided at a central region of the substrate; the electron passage accommodates a secondary-X-ray generating section that generates X-rays by irradiation with electrons reflected from the target; the secondary-X-ray generating section and the target are disposed so that both of X-rays generated by direct irradiation of the target with the electrons and X-rays generated by irradiation of the secondary-X-ray generating section with the electrons reflected from the target are radiated to the outside; and at least part of the peripheral region of the substrate has higher transmittance for the X-rays generated at the secondary-X-ray generating section than the central region of the substrate.
Abstract:
In an X-ray generation apparatus of transmission type including an electron emission source, and a target generating an X-ray with collision of electrons emitted from the electron emission source against the target, the X-ray generation apparatus further includes a secondary X-ray generation portion generating an X-ray with collision of electrons reflected by the target against the secondary X-ray generation portion, and the secondary X-ray generation portion and the target are arranged such that the X-ray generated with the direct collision of the electrons against the target and the X-ray generated with the collision of the electrons reflected by the target against the secondary X-ray generation portion are both radiated to an outside. X-ray generation efficiency is increased by effectively utilizing the electrons reflected by the target.
Abstract:
The present invention relates to a radiation generating apparatus which includes an envelope provided with a first window through which radiation is transmitted, a radiation tube housed in the envelope and provided with a second window through which the radiation is transmitted, the second window being located at a position opposite the first window, and an insulating fluid adapted to fill the space between the inner wall of the envelope and the radiation tube. Plural plates are arranged side by side between the first window including its periphery and the second window including its periphery, and overlapping one another with gaps between them. The gaps are formed among the plates, and thereby the withstanding voltage between the first window and second window is made larger.
Abstract:
A radiation generating apparatus of the present invention includes an envelope 1 including a first window 2 allowing radiation to pass; a radiation tube 10 that is accommodated in the envelope 1, and includes a second window 15 allowing radiation to pass, at a position opposite to the first window 2; a radiation passing hole 21 that is thermally connected to the second window 15 and communicates with the second window 15; and a radiation shielding member 16 protruding from the second window 15 toward the first window 2. In this apparatus, a thermal conducting member 17 having a higher thermal conductivity than the radiation shielding member 16 is connected to an outer periphery of the protruding portion of the radiation shielding member 16. The simple configuration can shield unnecessary radiation, and cool the target, while facilitating reduction in weight.
Abstract:
Provided is an X-ray generator comprising an X-ray tube including a cylindrical body; an electron source in the body; a target at an end of the X-ray tube facing the electron source, the target generating X-rays by irradiation with electrons; a container in which the X-ray tube is arranged; insulating liquid filled between the X-ray tube and the container; and a holding member holding the body of the X-ray tube in the container, with a channel for the insulating liquid around the X-ray tube. The distance between the holding member and the end face at the end of the body in the direction in which the electron source and the target face is twice or more as large as the minimum width of the channel that is in contact with the outer surface of the X-ray tube at the end face side with respect to the holding member. This allows heat in the target to be quickly radiated, thus allowing X-rays to be generated stably for a long time.
Abstract:
The present invention relates to a radiation generating apparatus which includes an envelope provided with a first window through which radiation is transmitted, a radiation tube housed in the envelope and provided with a second window through which the radiation is transmitted, the second window being located at a position opposite the first window, and an insulating fluid adapted to fill between the inner wall of the envelope and the radiation tube. Plural plates are arranged side by side between the first window including its periphery and the second window including its periphery by overlapping one another via gaps. The gaps is formed among the plates, thereby the withstanding voltage between the first window and second window is made larger.