摘要:
A method for manufacturing a semiconductor device is provided, which includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a first slurry containing first resin particles and a water-soluble polymer to planarize a surface of the organic film precursor, and polishing the organic film precursor where the surface is planarized using a second slurry containing second resin particles and a water-soluble polymer to leave the organic film precursor in the recess, thereby exposing the insulating film, an average particle diameter of the second resin particles being smaller than that of the first resin particles.
摘要:
A chemical mechanical polishing method comprises polishing an organic film using a slurry including polymer particles having a surface functional group and a water-soluble polymer.
摘要:
A method for manufacturing a semiconductor device is provided. The method includes successively forming a first silicon film and a mask film above a semiconductor substrate through a gate insulating film, forming a plurality of trenches in the first silicon film and in the mask film to a depth to reach the semiconductor substrate, filling the plurality of trenches with the silicon oxide film, removing the mask film to expose the first silicon film existing between the silicon oxide films, selectively growing a second silicon film on the first silicon film, planarizing the second silicon film using an alkaline slurry exhibiting a pH of 13 or less and containing abrasive grains and a cationic surfactant, thereby obtaining a floating gate electrode film comprising the first and second silicon films, forming an interelectrode insulating film on the entire surface, and forming a control gate electrode film on the interelectrode insulating film.
摘要:
A method for manufacturing a semiconductor device comprises forming a first silicon layer above a semiconductor substrate; forming a stopper layer on said first silicon layer; partially removing said stopper layer and said first silicon layer above said semiconductor substrate to form a plurality of trenches; forming an insulating layer on said stopper layer with inside of said trenches; partially removing said insulating layer to expose said stopper layer; after partially removing said insulating layer, removing said stopper layer to expose said first silicon layer; selectively growing second silicon layer on said exposed first silicon layer; nonselectively growing a third silicon layer on said second silicon layer; and polishing at least a surface of said third silicon layer by performing chemical mechanical polishing.
摘要:
A method for manufacturing a semiconductor device is provided. The method includes successively forming a first silicon film and a mask film above a semiconductor substrate through a gate insulating film, forming a plurality of trenches in the first silicon film and in the mask film to a depth to reach the semiconductor substrate, filling the plurality of trenches with the silicon oxide film, removing the mask film to expose the first silicon film existing between the silicon oxide films, selectively growing a second silicon film on the first silicon film, planarizing the second silicon film using an alkaline slurry exhibiting a pH of 13 or less and containing abrasive grains and a cationic surfactant, thereby obtaining a floating gate electrode film comprising the first and second silicon films, forming an interelectrode insulating film on the entire surface, and forming a control gate electrode film on the interelectrode insulating film.
摘要:
In a method of manufacturing a semiconductor device for planarizing a silicon oxide film with chemical mechanical polishing using a silicon film formed on a semiconductor substrate as a stopper film, a surface modification film for hydrophilizing the surface of the silicon film is formed on an upper layer of the polysilicon film, and slurry for the chemical mechanical polishing contains cerium oxide particles, a surface active agent, and resin particles having a cationic or anionic functional group.
摘要:
In a method of manufacturing a semiconductor device for planarizing a silicon oxide film with chemical mechanical polishing using a silicon film formed on a semiconductor substrate as a stopper film, a surface modification film for hydrophilizing the surface of the silicon film is formed on an upper layer of the polysilicon film, and slurry for the chemical mechanical polishing contains cerium oxide particles, a surface active agent, and resin particles having a cationic or anionic functional group.
摘要:
There is disclosed a method of processing a substrate, which comprises applying a surfactant or a water soluble polymer agent onto a surface of a substrate to be processed, and sliding a circumferential portion of the substrate and a polishing member against each other to polish the circumferential portion of the substrate.
摘要:
To planarize an insulating film formed on a semiconductor substrate, a polishing slurry containing cerium oxide is used to polish the surface of the insulating film. Using the cerium oxide included slurry as a polishing agent, the insulating film is not contaminated by alkali metals during the polishing process. Furthermore, the insulating film is polished at an enhanced polishing rate.
摘要:
First through fourth wiring layers are formed on the surface of a silicon substrate, then a silicon oxide layer containing fluorine is deposited over the wiring layers and the silicon substrate, and then another silicon oxide layer containing no fluorine is deposited over the silicon oxide layer containing fluorine. Subsequently, the silicon oxide layer containing no fluorine is flattened by polishing it for a predetermined length of time when the silicon oxide layer containing no fluorine is polished, the silicon oxide layer containing fluorine serves as a stopper, since the polishing rate of the silicon oxide layer containing fluorine is lower than that of the silicon oxide layer containing no fluorine.