Abstract:
This disclosure relates to a printed circuit board comprising a light-pervious insulation layer, a patterned electrically conductive layer and a light-pervious overlay. The patterned electrically conductive layer includes a first black oxide layer, a copper layer and a second black oxide layer. The copper layer includes two opposite surfaces and a plurality of inner surfaces interconnecting the two opposite surfaces of the copper layer. The first black oxide layer is formed on one of the surfaces, and the second black oxide layer is formed on the other surface and the inner surfaces. The patterned electrically conductive layer is arranged on the light-pervious insulation layer. The light-pervious overlay is arranged on the second black oxide layer. A method for manufacturing the printed circuit board is also provided in this disclosure.
Abstract:
A circuit board includes an insulating made by a low dielectric resin composition includes a low dielectric resin containing acid anhydride, an epoxy resin, polyphenylene ether resin with vinyl and active esters, maleic acid liquid polybutadiene, and an accelerator. Such low dielectric resin can be dissolved in organic solvent more easily than a low dielectric resin without acid anhydride, and the low dielectric resin containing acid anhydride has a better compatibility with other organic components than a low dielectric resin without acid anhydride. A low dielectric resin composition with lower dielectric constant and better properties can thus be obtained.
Abstract:
A resin composition comprises a modified polyimide compound, an epoxy resin, and a solvent. The modified polyimide compound has a chemical structural formula of the Ar′ represents a group selected from a group consisting of phenyl having a chemical structural formula of diphenyl ether having a chemical structural formula of biphenyl having a chemical structural formula of hexafluoro-2,2-diphenylpropane having a chemical structural formula of benzophenone having a chemical structural formula of and diphenyl sulfone having a chemical structural formula of and any combination thereof, the modified polyimide compound has a degree of polymerization n of about 1 to about 50, the epoxy resin and the modified polyimide compound are in a molar ratio of about 0.1:1 to about 1:1. A modified polyimide compound and a polyimide film are also provided.
Abstract:
A method for manufacturing a resin coating on copper foil includes following steps. Firstly, two diamines of 2,2-bis[4-(4-aminophenoxy)phenyl] propane and 4,4′-oxydianiline, and two acid anhydrides of pyromellitic diandydride and oxydiphthalic anhydride are added into a polar aprotic solvent and the solvent is stirred to form a mixed solution. Secondly, the mixed solution is heated to a temperature of about 170° C.-190° C. to allow a cross-linking reaction to be completed between the two diamines and the two acid anhydrides, thereby forming a thermoplastic polyimide adhesive fluid. The thermoplastic polyimide adhesive fluid is coated on a copper foil and cured to form a thermoplastic polyimide adhesive layer on the copper foil, thereby obtaining a resin coated copper foil. This disclosure also relates to resin coated copper foil and a method for manufacturing a multi-layer circuit board.
Abstract:
A low dielectric resin composition comprises a low dielectric resin containing acid anhydride, an epoxy resin, a rigid cross-linking agent, a soft cross-linking agent, and an accelerator. Such low dielectric resin can be dissolved in organic solvent more easily than a low dielectric resin without acid anhydride, and the low dielectric resin containing acid anhydride has a better compatibility with other organic components than a low dielectric resin without acid anhydride. A low dielectric resin composition with lower dielectric constant and better properties can thus be obtained. A film and a circuit board using such resin composition are also provided.
Abstract:
A resin composition comprises a modified polyimide compound, an epoxy resin, and a solvent. The modified polyimide compound has a chemical structural formula of the Ar′ represents a group selected from a group consisting of phenyl having a chemical structural formula of diphenyl ether having a chemical structural formula of biphenyl having a chemical structural formula hexafluoro-2,2-diphenylpropane having a chemical structural formula of benzophenone having a chemical structural formula of and diphenyl sulfone having a chemical structural formula of and any combination thereof, the epoxy resin and the modified polyimide compound are in a molar ratio of about 0.1:1 to about 1:1. A polyimide film and a method for manufacturing the polyimide film using the resin composition are also provided.