Abstract:
The present invention provides a method for manufacturing a polyimide film with a reduced gloss, which comprises providing a diamine and a diacid anhydride for polymerization in a solvent to form a polyimide precursor solution; adding 2-5 equivalents of a dehydrating agent and a catalyst into the polyimide precursor solution and then coating a carrier with the polyimide precursor solution to form a polyimide gel film; providing an embossing wheel to roll the polyimide gel film peeled from the carrier at a temperature of 140-200° C. and a pressure of 3-10 Kgf/cm2 to form a concave and convex shape on a surface of the polyimide gel film; and baking the polyimide gel film to form a polyimide film with a 60° gloss of less than 100 GUs.
Abstract:
A black matte polyimide film is provided, the black matte polyimide film includes polyimide, carbon black and polyimide fine powder. The polyimide component is obtained by polymerization of a dianhydride and a diamine, followed by chemical cyclization, in which the dianhydride is pyromellitic dianhydride, and the diamine comprises 5˜15 mol % of p-phenylenediamine and 95˜85 mol % of 4,4′-diaminodiphenyl ether; the carbon black is present in an amount of 2 to 8 wt % of the polyimide film; and the polyimide fine powder is present in an amount of 5 to 10 wt % of the polyimide film, such that the black matte polyimide film has a glossiness between 5 and 30 and a thermal expansion coefficient of less than 41 ppm/° C.
Abstract:
A manufacturing method of a continuous transparent polyimide film for a display includes the following steps providing a roll-to-roll polyimide film; providing a polyimide precursor, which is coated on the polyimide film; and baking the polyimide precursor at a baking temperature that is at least 20° C. higher than a glass transition temperature of the transparent polyimide film, such that the transparent polyimide film has an optical transmittance of greater than 85%, a chromaticity (b*) of less than 2, and a standard deviation of three axial refractive indices of the transparent polyimide film is less than 0.0012. Thus, the transparent polyimide film with reduced light leakage can be obtained.
Abstract:
A method of fabricating a flexible substrate assembly includes forming a first polyimide layer on a rigid support base, wherein the step of forming the first polyimide layer includes incorporating in a polyamic acid solution, an adhesion promoting agent and a release agent for achieving different adhesion strength at two opposite sides of the first polyimide layer, and forming a flexible second polyimide layer on the first polyimide layer, the second polyimide layer being adhered in contact with the first polyimide layer, and a peeling strength between the first and second polyimide layers being less than a peeling strength between the first polyimide layer and the support base so that the second polyimide layer is peelable from the first polyimide layer while the first polyimide layer remains adhered in contact with the support base.
Abstract:
A multilayered polyimide film includes a first polyimide layer containing fluorine-containing polymer particles and having a first surface and a second surface, and a second polyimide layer and a third polyimide layer respectively disposed on the first surface and the second surface. The second and the third polyimide layers contain organic silicon oxygen compound particles. The multilayered polyimide film has a coefficient of thermal expansion (CTE) between about 13 and about 30 ppm/° C.
Abstract:
The present disclosure relates, according to some embodiments, to the fabrication of a flexible circuit board, which includes forming a base layer comprising polyimide, forming a polyimide layer on the base layer, the polyimide layer having a first surface and a second surface opposite to each other, the first surface being peelably adhered in contact with the base layer, forming a metal layer on the second surface of the polyimide layer, and peeling the base layer from the polyimide layer with the metal layer remaining on the second surface of the polyimide layer.
Abstract:
A polyimide film includes a polyimide polymer forming a main molecular structure of the polyimide film, and polyimide particles present in the polyimide film at a weight ratio between about 15 wt % and 30 wt % of a total weight of the polyimide film, the polyimide particles having an average diameter between about 3 μm and 8 μm. The polyimide film can have a 60° gloss value equal to or smaller than 10, a haze equal to or higher than 90%, and a Young's modulus equal to or higher than 280 kgf/mm2. In some embodiments, methods of fabricating the polyimide film are also described.
Abstract:
A colored matting powder includes particles containing a polyimide obtained by reacting diamine and dianhydride monomers at a substantially equal molar ratio, and a pigment incorporated with the polyimide, a portion of the pigment being located at an outer surface of the particles. Moreover, a colored polyimide film is also described as incorporating the colored matting powder, and can exhibit low gloss, low transparency and good insulation.
Abstract:
A black matte polyimide film is provided, the black matte polyimide film includes polyimide, carbon black and polyimide fine powder. The polyimide component is obtained by polymerization of a dianhydride and a diamine, followed by chemical cyclization, in which the dianhydride is pyromellitic dianhydride, and the diamine comprises 5˜15 mol % of p-phenylenediamine and 95˜85 mol % of 4,4′-diaminodiphenyl ether; the carbon black is present in an amount of 2 to 8 wt % of the polyimide film; and the polyimide fine powder is present in an amount of 5 to 10 wt % of the polyimide film, such that the black matte polyimide film has a glossiness between 5 and 30 and a thermal expansion coefficient of less than 41 ppm/° C.
Abstract:
A method for manufacturing a polyimide composite film for a flexible metal-clad substrate includes the following steps, providing a polyamide acid solution; providing fluorine polymer particles and mixing the fluorine polymer particles with a dispersant and an organic solution to prepare a fluorine polymer particle dispersion; forming a colloidal polyimide film from the polyamide acid solution; and coating the colloidal polyimide film with the fluorine polymer particle dispersion and then performing baking to form a polyimide composite film.