Abstract:
A method to generate dense, multi-cyclic diamondoid fuels from bio-derived sesquiterpenes. This process can be conducted with both heterogeneous and homogenous catalysts and produces the targeted isomers in high yield. The resulting multi-cyclic structures impart significantly higher densities and volumetric net heats of combustion while maintaining low viscosities which allow for use at low temperature/high altitude. Moreover, bio-derived sesquiterpenes can be produced from renewable biomass sources. Use of these fuels will decrease Navy dependence on fossil fuels and will also reduce net carbon emissions.
Abstract:
A phosphorous modified zeolite (A) can be made by a process that includes selecting a zeolite, steaming the zeolite, leaching the zeolite, separating solids from liquid, and calcining. An olefin product can be made from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock by contacting the feedstock with the phosphorous modified zeolite (A) in an XTO reactor under conditions effective to convert at least a portion of the feedstock to olefin products. The XTO reactor effluent can include light olefins and a heavy hydrocarbon fraction. The light olefins can be separated from the heavy hydrocarbon fraction. The heavy hydrocarbon fraction can be contacted in an OCP reactor at conditions effective to convert at least a portion of the heavy hydrocarbon fraction to light olefins.
Abstract:
Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactor effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.
Abstract:
The present disclosure relates generally to processes and systems for the hydrodeoxygenation of an oxygenate feedstock that increases the conversion of oxygenates to hydrocarbons while avoiding detrimental effects resulting from increasing the severity of the hydrodeoxygenation reaction.
Abstract:
The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.
Abstract:
This specification discloses a process to convert a converted lignin feedstream to an aromatic composition comprised of aromatic compounds. The process follows the steps of exposing the converted lignin feedstream to at least one catalyst in the presence of donated hydrogen atoms at an exposure temperature greater than 190° C. for a time of at least thirty minutes. The donated hydrogen atoms are donated from at least one hydrogen donating compound during exposure of the converted lignin feedstream to the at least one catalyst at the exposure temperature. The resulting products are comprised largely of aromatics.
Abstract:
Disclosed is a catalyst for preparing isobutene by dissociation of methyl tert-butyl ether, the catalyst comprising amorphous silica alumina and a silicalite-1 molecular sieve, wherein the total IR acid amount of weak acids in the catalyst is in a range from 0.020 to 0.080 mmol/g, and the ratio of B acid/L acid of the weak acids is in a range from 2.5:1 to 4.0:1. Also provided is a method of preparing the catalyst and the use thereof. The catalyst has a high selectivity with respect to isobutene, and high conversion of methyl tert-butyl ether, and can also effectively inhibit formation of the by-product dimethyl ether.
Abstract:
The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the use of molybdenum catalysts of the formula Aa+a(MovXxR1yR2zR3e)a*3−, which may be readily prepared from industrial molybdenum compounds.
Abstract:
The present invention provides a method for simultaneous production of components suitable for production of base oil and fuel components. In the method a feedstock comprising fatty acids and/or fatty acid esters is entered into a reaction zone and subjected to a ketonization reaction in the presence of a dual catalyst system. This system is configured to perform a ketonization reaction and a hydrotreatment reaction, under hydrogen pressure. Subsequently ketones are obtained.