Abstract:
A cable for reinforcing objects formed of elastic or easily deformable material, such as automobile tires and conveyor belts, has as conventional components a core and at least one peripheral layer surrounding the core, each component being formed of elements, such as individual wires or strands of wires. The resistance of such a reinforcing cable to fatigue and/or to wear is increased due to the fact that at least two consecutive components in contact with each other in radial direction are constituted of elements made of material having moduli of elasticity which differ from one component to the other.
Abstract:
A composite twisted wire (1) which is obtained by twisting a plurality of strands. This composite twisted wire (1) includes: an aluminum-covered strand (2) that is obtained by forming a coating film (2b), which is formed of aluminum or an aluminum alloy, on the surface of a steel wire (2a); and an aluminum wire (3) that is formed of aluminum or an aluminum alloy. This composite twisted wire is reduced in weight, while exhibiting excellent tensile strength and excellent long-term stability with respect to electrical resistance. Consequently, this composite twisted wire is suitable, for example, for use as a wire harness of automobiles.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
A wire strand (10) comprises a plurality of wires (12, 16, 20). The wires comprise a central king wire (12), a first layer (14) of wires (16) arranged around the king wire, and a second layer (18) of wires (20) arranged around the first layer. The king wire is formed of steel having a carbon content of at least 0.3 wt %. Each wire of the first layer is formed of steel having a carbon content which is less than the carbon content of the king wire. Each wire of the second layer is formed of steel having a carbon content which is greater than, or the same as, the carbon content of the wires of the first layer.
Abstract:
A twisted cable includes a main body which includes a central filament and a plurality of twisted filaments. The twisted filaments are arranged around the central filament and include six first filaments, twelve second filaments, and eighteen third filaments from the central filament outward. The cross-section of each first filament is the same with the one of each second filament. The cross-section of each first filament is larger than the one of the third filament but smaller than the one of the central filament. The twisted filaments are twisted around the central filament. As a result, the twisted cable of the present invention has improved structure strength, appropriate toughness, and smaller amount of longitudinal deformation.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
In a multi-strand steel cable, at least three layers are present. An inner layer includes from 1 to 4 wires. An intermediate layer surrounds the inner layer and includes from 3 to 12 wires wound together in a helix at a pitch p2. An outer layer surrounds the intermediate layer and includes from 8 to 20 wires wound together in a helix at a pitch p3. A rubber sheath covers at least the intermediate layer and is formed of a cross-linkable or cross-linked rubber composition that includes at least one diene elastomer.
Abstract:
The twisted cable is produced by entwisting plural surround wires together on a central wire. The surround wires have several different sizes. The surround wires are arranged in a particular arrangement so as to reduce elongation when stretch force is exerted on the twisted cable. In addition, the outer surround wires have smoothened outer surfaces, so that the twisted cable has smooth and satiny outer surface. Friction and abrasion caused by pulling the twisted cable is reduced.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract translation:本发明涉及可用作轮胎胎体加强件的增强元件的结构L + M + N的三层金属电缆,包括:具有直径d1的L线的内层C1,L为1至4,被 直径为d2的M线的中间层C2以螺距p2以螺距p2缠绕在一起,间距p2为M为3至12,所述层C2被缠绕在一起的直径为d3的N线的外层C3围绕,螺旋线为 间距p3,其N为8至20,所述电缆的特征在于由基于至少一种二烯弹性体的可交联或交联的橡胶组合物形成的护套至少覆盖所述层C2。 本发明还涉及由这种多层电缆增强的塑料材料和/或橡胶制成的制品或半成品,特别是工业车辆中使用的轮胎,特别是重型车辆轮胎及其胎体增强件 层
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterized in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract translation:本发明涉及可用作轮胎胎体加强件的增强元件的结构L + M + N的三层金属电缆,包括:具有直径d1的L线的内层C1,L为1至4,被 直径为d2的M线的中间层C2以螺距p2以螺距p2缠绕在一起,间距p2为M为3至12,所述层C2被缠绕在一起的直径为d3的N线的外层C3围绕,螺旋线为 间距p3,其N为8至20,所述电缆的特征在于由基于至少一种二烯弹性体的可交联或交联的橡胶组合物形成的护套至少覆盖所述层C2。 本发明还涉及由这种多层电缆增强的塑料材料和/或橡胶制成的制品或半成品,特别是工业车辆中使用的轮胎,特别是重型车辆轮胎及其胎体增强件 层