Abstract:
The method allows the manufacture of at least first and second assemblies (26, 28) of M1 filamentary elements and M2 filamentary elements, at least one of the first and second assemblies (26, 28) comprising several filamentary elements (14) wound together in a helix.The method comprises a step of assembling M filamentary elements (14) together into a layer of the M filamentary elements (14) around a temporary core (16) to form a temporary assembly (22), and a step of splitting the temporary assembly (22) into at least the first and second assemblies (26, 28) of M1 filamentary elements and M2 filamentary elements.
Abstract:
A tyre includes a carcass structure including at least one carcass ply, a belt structure applied in a radially outer position with respect to the carcass structure, and a tread band applied in a radially outer position with respect to the belt structure. The belt structure includes two main belt layers and first and second reinforcing strips incorporating a plurality of reinforcing elements arranged substantially in the circumferential direction. The reinforcing elements include at least one high-elongation metal cord including a plurality of intertwined strands, and each strand includes a plurality of filaments. Each filament has a diameter not greater than 0.175 mm.
Abstract:
A steel cord having a plurality of strands twisted together with a cord twist pitch. Each strand having a plurality of filaments twisted together with a strand twist pitch. The elongation at break of the steel cord is no less than 5%. The strand having a strand twist angle. The steel cord having a cord twist angle. When the sum of the strand twist angle and the cord twist angle is between 20 and 29 degree, the structural elongation of the steel cord is no less than 2.0%. When the sum of the strand twist angle and the cord twist angle is between 30 and 38 degree, the structural elongation of the steel cord is no less than 2.5%. When the sum of the strand twist angle and the cord twist angle is between 39 and 48 degree, the structural elongation of the steel cord is no less than 3.0%.
Abstract:
Hybrid rope (20) comprising a core element (22) containing high modulus fibers surrounded by at least one outer layer (24) containing wirelike metallic members (26). The core element (22) is coated (23) with a thermoplastic polyurethane or a copolyester elastomer, preferably the copolyester elastomer containing soft blocks in the range of 10 to 70 wt %. The coated material (23) on the inner core element (22) is inhibited to be pressed out in-between the wirelike members (26) of the hybrid rope (20) and the hybrid rope (20) has decreased elongation and diameter reduction after being in use.
Abstract:
A motorcycle tire comprises: a toroidal carcass comprising two carcass plies of cords arranged at an angle of from 20 to 80 degrees with respect to the tire circumferential direction; and a band comprising at least one ply of at least one helically wound cord disposed radially outside the carcass. The band cord is made of steel filaments of 0.08 to 0.20 mm diameter twisted together into a L×M×N structure. The band cord has a low tensile elastic modulus range and a high tensile elastic modulus range, wherein an inflection point between the low tensile elastic modulus range and the high tensile elastic modulus range lies between 2% elongation and 7% elongation of the cord, and a tensile force required to cause 2% elongation of the band cord is not more than 60 Newton.
Abstract:
The present invention provides a prestressing strand that has higher strength and is more suitable for practical use than known prestressing strands, and a concrete construction using the prestressing strand.The prestressing strand that has higher strength and is more suitable for practical use than known prestressing strands has a seven-wire structure in which one core wire and six outer wires are stranded and can be made by adjusting the external diameter to 15.0 mm to 16.1 mm, the total cross-sectional area to 135 mm2 or more, and the load at 0.2% or 0.1% permanent elongation to 266 kN or more.
Abstract:
Elastic metal/textile composite cord (C-1) having two layers (Ci, Ce) of 1+N construction, formed from a core or inner layer (Ci) comprising a textile core thread (10) of diameter d1 and a metal outer layer (Ce) of N wires (12) of diameter d2 wound together in a helix with a pitch p2 around the layer Ci, said cord being characterized in that it has the following characteristics (p2 in mm): As>1.0%; At>4.0%; Af>6.0%; d1>1.1d2; 4
Abstract:
A tire reinforcing steel cord (1, 10) is provided which has a 1nulln structure formed by twisting together four to seven individual wires having a wire diameter of 0.20 to 0.45 mm, the steel cord being wound a plurality of times in the vicinity of opposite side edges of a belt section of a tire, wherein the steel cord has a substantially spiral or a substantially planar wavy deformation, has an elongation of 1.2% to 2.0% when applying a tensile load of 50 N in a tensile test according to JIS B 7721, and becomes substantially linear with its wavy deformation disappearing under a tensile load in the range of 50 to 250 N. When the steel cord is embedded in a tire as a zero degree belt cord, it stretches to a moderate extent so as to track the expansion of the tire in the radial direction during the vulcanization process in the molding of the tire, and since the steel cord has low stretch after the tire has been molded, it is possible to restrain expansion of the tire in the radial direction during continued high speed rotation of the tire.
Abstract:
A steel cord reinforcement for elastomers and elastomeric articles comprising a steel cord crimped in a zig-zag fashion used in the warp direction of the reinforcing fabric; the crimps of adjacent warped cords lie in phase, and the wave length p of the crimp and the amplitude c of the crimp are related such that 0.02 p.ltoreq.c.ltoreq.0.07 p; to achieve optimal properties of cord elongation and cord deformation, the relationship S=k p.sup.2 wherein 0.7.ltoreq.k.ltoreq.3, and the stiffness S=10.sup.4 N [.SIGMA.(D.sub.i.sup.4 .times.n.sub.i)] wherein D.sub.i represents the diameter of wire filament "i" in the cord, n.sub.i is the number of wires "i" per warp cord, and N is the number of warp cords per mm width of the fabric.