摘要:
A multi-stage dilution device, comprising a first stage dilution apparatus (A), and a second stage dilution apparatus (B), each of the stage dilution device comprising: (i) a housing (1) having a diluent inlet (7); (ii) a sample inlet (2) having a sample introducer within the housing (1) adapted to introduce the sample at an introducer point (4) within the housing (1); and, (iii) a mixing conduit (5) mounted at least partially within the housing (1), the mixing conduit (5) having an inlet section comprising a mouth (10), and a fluid outlet (8), and a throat section (9) capable of producing a pressure drop within the mixing conduit (5), the pressure drop being sufficient to draw sample through the sample inlet (2); the introducer point (4) of the sample inlet (2) being proximate the mixing conduit inlet; and wherein the fluid output (8) of the first stage dilution apparatus (A) is in communication with the sample inlet (2) of the second stage dilution apparatus (B). A method of diluting a sample is also disclosed.
摘要:
The present invention relates to a method for the assessment of quantity and quality parameters of biological particles in a liquid analyte material. The method comprises applying a volume of a liquid sample to an exposing domain from which exposing domain electromagnetic signals from the sample in the domain can pass to the exterior, and exposing, onto an array of active detection elements such as CCD-elements, a spatial representation of electromagnetic signals having passed from the domain, the representation being detectable as an intensity by individual active detection elements, under conditions permitting processing of the intensities detected by the array of detection elements during the exposure in such a manner that representations of electromagnetic signals from the biological particles are identified as distinct from representations of electromagnetic signals from background signals. The size of the volume of the liquid sample is sufficiently large to permit the assessment of the quantity and quality parameters to fulfill a predetermined requirement to the statistical quality of the assessment based on substantially one exposure.
摘要:
Computer-implemented methods and programs for organizing image data representing light scattered from one or more substantially spherical microparticles and the resulting data structures are disclosed. A digital representation of an image produced on an electronic image plane by light scattered from one or more substantially spherical microparticles at each of a predetermined number (Q) of illuminating wavelengths is created. For each of the N pixels in each image an associated Image Intensity Data Array containing Q values is created. In one embodiment the resulting data structure is an inclusive collection of Pixel Records from each pixel in the image. In a second embodiment a select set of S number of Image Intensity Data Arrays is chosen. Each Image Intensity Data Array in the select set has at least one intensity value that exceeds a predetermined analog threshold. A Pointer Array containing N values is also created. The Pointer Array correlates the position on the electronic image plane of the pixel associated with each Image Intensity Data Array in the select set with the order of selection of that data array into the select set.
摘要:
This invention relates to apparatuses for non-contact three-dimensional measurement of bodies and methods for determining a system of coordinates for measuring points on an apparatus for non-contact three-dimensional measurement of bodies. The apparatus and the method are characterized by particular simplicity and easy implementation. Advantageously, this makes the apparatus and method applicable in production sites for special workpieces. This opens up a wide and highly cost-efficient range of uses. Before the workpieces are measured, a system of coordinates for three-dimensional matching of the workpiece geometry is determined in a first measurement. A body with known dimensions of its edges or lines is placed on any position on the turntable and measured during one rotation using the triangulation sensor. The apparatus according to the invention is thus characterized by its minimal design. The low number of movements required, i.e. one translatory movement of the triangulation sensor and a rotational movement of the turntable, results in determining the outline of a body with a minimal error of measurement.
摘要:
In a microcapsule having a wall of a refractive index n1, a thickness-determining apparatus comprises at least (i) a sensor 1 for detecting a light scattering intensity data I1 with respect to a microcapsule dispersed in a medium having a refractive index n1, and a light scattering intensity data I2 with respect to a microcapsule dispersed in a medium having a refractive index n2; (ii) a memory circuit 3 for storing a theoretical equation correlating a light scattering intensity characteristic with a particle size; and (iii) an arithmetic circuit 5 for calculating an inner diameter r1 and an outer diameter r2 from the theoretical equation based on the light scattering intensity data I1 and I2, and calculating a wall thickness. In such an apparatus, since the refractive index of the medium conforms to the refractive index of the wall, the inner diameter can be calculated by a simple theoretical equation, and the wall thickness can be conveniently or certainly determined without destroying the wall by cutting.
摘要:
Method for in-situ sampling and measuring particulate (e.g., carbon black) fineness in a process stream, such as in a carbon black reactor, comprising (a) sampling particles in-situ from a process stream, (b) adjusting the sample to conditions suitable for LII, (c) measuring the fineness using LII, and (d) correlating the LII fineness measurement with actual particle fineness. Method for in-situ sampling a particle-containing stream and measuring particle fineness using laser-induced incandescence (LII) comprising (a) sampling particles in-situ, (b) adjusting the sample to conditions suitable for LII, (c) measuring the adjusted sample using LII, and (d) correlating the LII measurements with actual particle fineness. Also included is a method of sampling and controlling a process based on the real-time, on-line, in-situ methods for sampling and measuring particles. Sampling can comprise drawing a sidestream from a source of the particles. Adjusting the sample to conditions suitable for LII can comprise diluting the sample or bringing the temperature of the sample to ambient conditions. Correlating may comprise using a correlation function determined by comparing LII measurements and laboratory fineness measurements for particle samples drawn at the same time.
摘要:
The use of light scattering particles in the design, manufacturing, and quality control of microscale devices and process, and the analysis of solid substrate and porous substrate characteristics is described.
摘要:
A method is disclosed which allows more accurate counting of particles where the sample has significant size variability between particles. The method uses flight time and wait time to obtain a corrected count of particles.
摘要:
The invention provides a method and a system for measuring geometric properties, such as diameter, shape and surface roughness of single rough particles by an optical method. The particle may be immersed in a gaseous or liquid fluid. A volume of the fluid, containing the particles to be measured, is illuminated by a beam of coherent electromagnetic radiation, resulting in a distribution of scattered radiation with a speckle structure. This distribution is detected with a one-dimensional or two-dimensional image detector. An autocorrelation function RI(r) of the detected intensity distribution is calculated, and from the position .delta.r of its first zero the diameter d.sub.P of the scattering particle is evaluated based on I, the wavelength of the electromagnetic radiation, and Z.sub.0, the distance from the particle to the detector. The system to perform this method comprises a radiation source, which is preferably a laser, to illuminate a measuring volume, and an array or matrix detector arranged to receive the backscattered light. The detected intensity distribution is converted to binary data and a signal processing unit calculates the autocorrelation function of the detected intensity distribution to yield the particle size. In a preferred embodiment of the invention, the radiation scattered from a particle is relayed to the detector by an optical system comprising a set of lenses, a polarizer and a pinhole. The surface roughness of the particle under investigation is estimated from the contrast of the measured intensity distribution. The shape of the particle follows from an evaluation of the calculated diameter values along a set of angular directions .phi.=0 . . . .pi..
摘要:
Metal oxide gel particles, may be prepared with a desired particle size, by preparing a low-temperature aqueous metal nitrate solution containing hexamethylene tetramine as a feed solution; and causing the feed solution to flow through a first tube and exit the first tube as a first stream at a first flow rate, so as to contact a high-temperature nonaqueous drive fluid. The drive fluid flows through a second tube at a second flow rate. Shear between the first stream and the drive fluid breaks the first stream into particles of the metal nitrate solution, and decomposition of hexamethylene tetramine converts metal nitrate solution particles into metal oxide gel particles. A metal oxide gel particle size is measured optically, using a sensor device directed at a flow of metal oxide gel particles within the stream of drive fluid. The sensor device measures transmission of light absorbed by either the metal oxide gel particles or the drive fluid, so that transmission of light through the drive fluid changes for a period of time as a metal oxide gel particle passes the optical sensor. If a measured particle size is not about equal to a desired particle size, the particle size may be corrected by adjusting a ratio of the first flow rate to a total flow rate, where the total flow rate is the sum of the first and second flow rates.