Abstract:
Functional diagnostic testing of an electronic circuit board assembly with one or more embedded channels to be tested includes steps of: (a) connecting a channel under test; (b) imposing a known digital or analog voltage, as appropriate for a channel under test, that is generated by a digital or analog output of the electronic circuit board assembly; and (c) comparing data read by the channel under test with the stored value of the imposed voltage and required tolerance to determine whether the channel under test is within specifications. Diagnostic test implemented by digital logic and software residing onboard the electronic circuit board assembly. Execution of software or firmware code segment controls the diagnostic test sequence. Signal switching is facilitated by digital and analog multiplexers.
Abstract:
A manufacturing method of a semiconductor device is provided with an inspecting of a semiconductor substrate by an inspection method, the method including heating the semiconductor substrate, measuring first and second characteristics. The measuring of a first characteristic is performed by bringing a plurality of probes into contact with the heated semiconductor substrate and making a first electric current flow in the semiconductor substrate. The measuring of a second characteristic is performed, after the measuring of the first characteristic, by bringing a plurality of probes into contact with the heated semiconductor substrate and making a second electric current flow in the semiconductor substrate. A number of the plurality of probes used in the measuring of the second characteristic is larger than a number of the plurality of probes used in the measuring of the first characteristic. The second electric current is larger than the first electric current.
Abstract:
The systems, apparatus, and methods disclosed herein provide access to systems located within a closed structure, such that the systems are traditionally difficult for humans to access. Exemplary structures include an engine compartment, airplane wing, or fuselage. This access allows a system located within the structure to be electrically coupled with an electrical I/O device located outside the structure. Access to a system located within the closed structure is provided by way of a hole.
Abstract:
A test handler comprises an orientation changing device having a device holder for holding electronic devices, the device holder having a vertical rotary axis. A conveying device is operative to convey electronic devices to the device holder, and a rotary motor connected to the device holder is operative to rotate the device holder about the vertical rotary axis to change an orientation of the electronic device held on it. A rotary turret of the test handler has a plurality of pick heads arranged on the rotary turret, and each pick head is configured to pick up electronic devices from the device holder.
Abstract:
A circuit integrity detection system for use in detecting the integrity of a sensing wire in a heating pad wherein the integrity of the sensing wire is determined by first driving one end of the sensing wire with a low voltage electrical test signal from a microcontroller, and then checking whether the test signal is present on the other end of the sensing wire, in order to distinguish the test signal from the standard AC line voltage present on the sensing wire, the electrical test signal is preferably of a different frequency than the standard 50-60 Hz AC line voltage. In one embodiment, the test signal frequency is approximately 30 kHz.
Abstract:
The invention relates to a sensor device for detecting properties of fluid media in a container, comprising at least one base plate (42) made of an insulating material and having a first surface (42a) exposed to the medium (3), at least two sensor elements (41) having at least a first and a second electrode (41a, 41b) arranged insulated from one another on the first surface of the base plate and around which the medium flows, the at least two sensor elements being arranged in a predetermined spatial position relative to each other.
Abstract:
A probe unit according to the present invention is suitable for allowing a large current to flow. In the probe unit that accommodates a plurality of contact probes for electrically connecting an inspection target object and a signal processing device used to output an inspection signal, both ends of a large current probe (3) are electrically connected to electrodes of a contact target object, and a large current is made to flow via a metal block (50) that comes into contact with both end portions of the large current probe (3).
Abstract:
A probe having a sliding rail is provided and includes a probe head, a probe tail, an elastic element made of an elastic material and connected between the probe head and the probe tail, and a sliding rail assembly. The sliding rail assembly includes a slide rail and a position limit protrusion. The slide rail has a fixed end and a free end. The fixed end is fixedly connected to the probe tail, and the free end extends to the probe head. The position limit protrusion is fixedly connected to the probe head, and has a sliding slot formed thereon through which the slide rail can pass. The sliding rail assembly is made of a conductive material, and a cross-section area of the slide rail is greater than a cross-section area of the elastic material of the elastic element.
Abstract:
A coin-shaped detection object discriminating device may be used with a detection object in a coin shape, and the coin-shaped detection object discriminating device may include a passage through which the detection object is passed; a permanent magnet; and a magnetic sensor disposed opposite to the permanent magnet across the passage.
Abstract:
A closed-loop calibration scheme is configured to allow a device to remain in continuous operation. A signal generator device provides a pseudorandom sequence for a signal received by a magnetic field magnetic field sensor, such as a Hall-effect sensor. A signal decoder circuit receives the output signal and decouples the generated spread spectrum signal from the interference by measuring the gain in the overall signal. The decoder device distinguishes the known spread spectrum signal from any perturbation effects of particular bandwidths. A processing circuit then outputs a signal that has an operation parameter that has been adjusted to compensate for the perturbation effects. The processing circuit provides the receiver circuit with the compensation signal, hence forming a closed-loop calibration configuration.