Abstract:
Apparatus for ionizing gases at very low pressures comprising inner and outer electrodes wherein the inner electrode is substantially circular in cross section and the outer electrode surrounding the inner electrode may be other than a figure of revolution or may be eccentrically positioned with respect to the inner electrode which inner electrode is less in length than two times the length of the surrounding outer electrode and is spaced therefrom a distance which is greater than the diameter of the inner electrode for a distance of not less than two-thirds the length of the surrounding outer electrode.
Abstract:
A thermal control system includes a closed loop arranged to carry a circulating fluid. There is at least a first heat exchanger and a flow unit in the closed loop. The flow unit includes a first electrode and a second electrode offset from the first electrode in a downstream direction of a flow of the circulating fluid. The first electrode and the second electrode are connectable to a voltage source. The first electrode is formed as a grid structure and arranged to allow the circulating fluid to flow through the first electrode.
Abstract:
An ion pump includes at least one electron source configured to emit electrons into the ion pump; at least one cathode positioned across the ion pump from the at least one electron source; a high-voltage grid positioned between the at least one electron source and the at least one cathode. The high-voltage grid is configured to draw the electrons in between the at least one electron source and the at least one cathode where the electrons collide with gas molecules causing the gas molecules to ionize. The at least one cathode is configured to draw ionized gas molecules toward the at least one cathode such that the ionized gas molecules are trapped by or near the at least one cathode.
Abstract:
A micro-ion pump is provided. The micro-ion pump includes a plurality of thin-film-edge field emitters, a first gate electrode, a second gate electrode, and a high voltage anode. The plurality of thin-film-edge field emitters is in a first X-Z plane. The plurality of thin-film-edge field emitters has a respective plurality of end faces with a high aspect ratio in at least one Y-Z plane. The first gate electrode is in a second X-Z plane offset from the first X-Z plane. The second gate electrode is positioned in a third X-Z plane offset from the first X-Z plane. The high voltage anode is in a fourth X-Z plane offset from the plurality of thin-film-edge field emitters in the first X-Z plane. The second gate electrode is between the high voltage anode and the plurality of thin-film-edge field emitters.
Abstract:
An ion pump includes one or more anode pump cells, a cathode positioned in proximity to the one or more anode pump cells and a magnet assembly for producing a magnetic field in the one or more anode pump cells. An electric field is applied between the cathode and the one or more anode pump cells. The magnet assembly includes primary magnets of opposite polarities disposed on opposite ends of the anode pump cells and secondary magnets disposed on opposite sides of the anode pump cells. The magnet assembly may further include a magnet yoke which provides a magnetic flux return path. The magnet assembly produces a substantially uniform axial magnetic field in the one or more anode pump cells.
Abstract:
A mass spectrometer (MS) which uses the Fourier transform ion cyclotron resonance (FTICR) technique to determine the mass of ions. The MS is prepared with a surface that guarantees that a particle striking the surface will have at least one contact with the cathode and will most likely be re-pumped before escaping into the vacuum chamber volume.