摘要:
This invention relates to the field of laser technology and more particularly to the ultra-short pulse generation methods and generators. One round trip of the ultra-short light pulse formation inside a generator optical loop comprises these steps: amplification of the light pulse, spectral broadening of the amplified light pulse due to the optical Kerr effect inside the optically transparent medium, selection of the predeterminated spectral components of the spectrally broadened light pulses by using the first spectrally-sensitive optical element, then again follows amplification of the selected light pulses, spectral broadening of the amplified light pulse due to the optical Kerr effect inside the optically transparent medium and selection of the predeterminated spectral components of the spectrally broadened light pulses by using the second spectrally-sensitive optical element, where spectral components of the light pulses selected using the first spectrally-sensitive optical element are different than the spectral components of the light pulses selected using the second spectrally-sensitive optical element.
摘要:
A wavelength tunable silicon-on-insulator (SOI) laser comprising: a laser cavity including: a semiconductor gain medium having a front end and a back end, wherein a mirror of the laser cavity is located at the back end of the semiconductor gain medium; and a phase-tunable waveguide platform coupled to the front end of the semiconductor gain medium, the phase-tunable waveguide platform comprising: a first resonator and a second resonator; at least one resonator being a phase-tunable resonator; wherein the first resonator is any one of: an MMI device including a pair of reflective surfaces defining a resonator cavity therebetween such that the device is configured to act as a Fabry-Perot filter; a ring resonator; or a waveguide Fabry-Perot filter; and wherein the second resonator is any one of: an MMI device including a pair of reflective surfaces defining a resonator cavity therebetween such that the device is configured to act as a Fabry-Perot filter; a ring resonator; or a waveguide Fabry-Perot filter.
摘要:
A hybrid optical source that provides an optical signal having a wavelength (or a narrow band of wavelengths) is described. This hybrid optical source includes an optical amplifier (such as a III-V semiconductor optical amplifier) that is butt-coupled or vertically coupled to a silicon-on-insulator (SOI) platform, and which outputs an optical signal. The SOI platform includes an optical waveguide that conveys the optical signal. A temperature-compensation element included in the optical waveguide compensates for temperature dependence of the indexes of refraction of the optical amplifier and the optical waveguide. In addition, a reflector, adjacent to the optical waveguide after the temperature-compensation element, reflects a portion of the optical signal and transmits another portion of the optical signal that has the wavelength.
摘要:
An optical system includes a laser cavity on a base. The laser cavity generates a light signal in response to application of an electrical current to the laser cavity. The system includes first electronics that apply a target level of the electrical current to the laser cavity so as to cause the laser cavity to generate the light signal. The light signal experiences mode hops at electrical current levels that shift to higher current levels in response to increasing laser operation times. A first one of the mode hops occurs at a first current level and a second one of the mode hops occurs at a second current level that is higher than the first current level. The system also includes a phase shifter that interacts with the laser cavity so as to shift the mode hops to lower current levels than occur in the absence of the phase shifter.
摘要:
Methods and systems for determining material composition of a test sample may be provided. The test sample may be placed in a magnetic region having a magnetic field. A light beam may be directed at the test sample in the magnetic region. A birefringence in the light beam that has passed through the test sample may be detected. The material composition of the test sample may be determined based on the detected birefringence in the light beam.
摘要:
Using a laser source unit, pulse laser beams having a plurality of wavelengths is switched and emitted. A Q switch is inserted into an optical resonator including a pair of mirrors which face each other with a laser rod interposed therebetween. A wavelength selection unit includes a plurality of band pass filters having different transmission wavelengths, and selectively inserts the plurality of band pass filters into a light path of the optical resonator. A trigger control circuit controls driving unit that drives the wavelength selection unit so that the band pass filters inserted into the light path of the optical resonator are switched at a predetermined switching speed. In addition, the trigger control circuit causes the laser rod to be irradiated with excitation light from a flash lamp, and then turns on the Q switch at a timing when the wavelength selection unit inserts the band pass filter.
摘要:
A technique related to a semiconductor chip is provided. An optical gain chip is attached to a semiconductor substrate. An integrated photonic circuit is on the semiconductor substrate, and the optical gain chip is optically coupled to the integrated photonic circuit thereby forming a laser cavity. The integrated photonic circuit includes an active intra-cavity thermo-optic optical phase tuner element, an intra-cavity optical band-pass filter, and an output coupler band-reflect optical grating filter with passive phase compensation. The active intra-cavity thermo-optic optical phase tuner element, the intra-cavity optical band-pass filter, and the output coupler band-reflect optical grating filter with passive phase compensation are optically coupled together.
摘要:
Described herein are optical devices based on two-dimensional materials and methods for making such devices. In particular, the articles described herein are useful in the control and modulation of light via graphene mono- or multilayers. methods for improved transfer of graphene from formation substrates to target substrates. The improved articles provide exceedingly high modulation depths in vis-NIR light transmission, with small insertion losses, thus revealing the potential of graphene for fast electro-optics within such a technologically important range of optical frequencies.
摘要:
Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.
摘要:
A hybrid optical source that provides an optical signal having a wavelength (or a narrow band of wavelengths) is described. This hybrid optical source includes an optical amplifier (such as a III-V semiconductor optical amplifier) that is butt-coupled or vertically coupled to a silicon-on-insulator (SOI) platform, and which outputs an optical signal. The SOI platform includes an optical waveguide that conveys the optical signal. A temperature-compensation element included in the optical waveguide compensates for temperature dependence of the indexes of refraction of the optical amplifier and the optical waveguide. In addition, a reflector, adjacent to the optical waveguide after the temperature-compensation element, reflects a portion of the optical signal and transmits another portion of the optical signal that has the wavelength.