摘要:
An energy integrating device for split semiconductor laser diodes includes: an installing holder, wherein the installing holder has a disc structure with a positioning hole at a center thereof, four module bases for mounting laser modules are symmetrically provided at one side of the disc structure, and the laser modules are embedded inside the module bases; a printed circuit board, connected to the laser modules through sleeves, is mounted at one side of the module bases, and a wire and a plug are mounted on the printed circuit board for connecting a power source; the laser modules are adjusted and positioned through fastening screws, and laser beams thereof are emitted through surface holes of the installing holder with the disc structure; the laser beams from the laser modules are focused onto one laser spot through a positive lens.
摘要:
Provided is a laser module wherein any defective laser device can be isolated by performing burn-in on laser devices mounted on a mounting substrate. The laser module includes laser devices that emit laser light, a driver IC for driving the laser devices, a mounting substrate on which the laser devices and the driver IC are mounted, a common electrode terminal to which a common electrode of the laser devices is connected, individual electrode terminals to which individual electrodes of the laser devices are respectively connected, driver terminals to which the driver IC is connected, and test terminals which are respectively connected to the common electrode terminal and the individual electrode terminals, and to which an external power supply is to be connected when performing burn-in of the laser devices, wherein the number of the laser devices and the number of the test terminals are each larger than the number of the driver terminals.
摘要:
An optical phase lock loop (OPLL) system is disclosed that includes a master external cavity laser (ECL), and a substantially identical slave ECL. The master and slave ECLs are fabricated using a planar semiconductor device with waveguide-integrated planar Bragg gratings (PBG). Both the master and slave ECLs have a narrow linewidth and a low frequency-noise. Each of the ECLs has their own controller-modulator circuits for thermal tuning or electrical tuning via direct modulation. A laser-select-logic (LSL) module receives and processes a filtered phase error signal from a loop filter coupled to an electronic PLL device, and directs the processed phase error signal to one or both of the master and slave controller-modulators according to a logical determination of a required mode of operation of the OPLL system in order to achieve a stable and identical phase performance of the master and the slave ECLs. The required mode of operation is chosen from a locking mode, a prediction mode, a tracking mode, and a searching mode.
摘要:
This semiconductor laser apparatus includes a first semiconductor laser device having a first surface and a second surface, an integrated laser device formed by a second semiconductor laser device and a third semiconductor laser device having a third surface and a fourth surface, and a support substrate. The third surface is bonded onto a first region of the support substrate, a first section of the first surface overlaps with at least part of the fourth surface, and a second section of the first surface is bonded to a second region of the support substrate.
摘要:
An infrared element (10a) which includes at least a light emitting layer forming portion (9a) composed of, for example, a first conductivity type cladding layer (2a), an active layer (3a), and a second conductivity type cladding layer (4a) for emitting infrared light, is formed on a semiconductor substrate (1), and a red element (10b) which includes at least a light emitting layer forming portion (9b) composed of, for example, a first conductivity type cladding layer (2b), an active layer (3b), and a second conductivity type cladding layer (4b) for emitting red light, is formed on the same semiconductor substrate (1). And their second conductivity type cladding layers (4a and 4b) are made of the same material. As a result, forming process of their ridge portions may be communized and both of the elements can be formed respectively, with a window structure capable of high output operation.
摘要:
The unitized cooling module for a laser diode array of the invention has at least one cooling unit. The cooling unit has an inlet main channel, an outlet main channel, an inlet subchannel, an outlet subchannel and a chamber. The inlet subchannel connects the inlet main channel and the chamber, and the outlet subchannel connects the outlet main channel and the chamber. A heatsink element carrying a laser diode seals the chamber. With a cooling source flowing through the interior of the cooling unit, the heat produced by the laser diode is removed. Thus, the unitized cooling module of the invention is easily assembled, repaired and expanded, and has the effect of pressing fit. Furthermore, the unitized cooling module of the invention can be arranged and designed according to the heat produced by the laser diode to remove the heat from the laser diode, so that the performance of the unitized cooling module is ensured.
摘要:
After forming domain inverted layers 3 in an LiTaO3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a non-linear optical effect, a highly reliable element is provided.
摘要:
There is disclosed a monolithic semiconductor laser which is provided with an AlGaAs based semiconductor laser element (10a) and an InGaAlP based semiconductor laser element (10b) formed on a semiconductor substrate (1). The AlGaAs based semiconductor laser element (10a) is composed of an infrared light emitting layer forming portion (9a), which has an n-type cladding layer (2a), an active layer (3a) and a p-type cladding layer (4a) formed so as to have a ridge portion, and a current constriction layer (5a) provided on sides of the ridge portion, while the InGaP based semiconductor laser element (10b) is composed of a red light emitting layer forming portion (9a), which has an n-type cladding layer (2b), an active layer (3b) and a p-type cladding layer (4b) formed so as to have a ridge portion, and a current constriction layer (5b) provided on sides of the ridge portion. The current constriction layers of the both elements are made of the same material having a larger band gap than that of the active layer (3b) of the red light emitting layer forming portion. Consequently, there can be obtained a monolithic semiconductor laser capable of high temperature and high output operation without increasing the number of processes of the growth.
摘要:
Disclosed is a method of doping an oxide. The example method includes forming at least one of an AlGaAs oxide or an InAlP oxide on a GaAs substrate, and incorporating Erbium into the at least one AlGaAs oxide or InAlP oxide via ion implantation to form an Erbium-doped oxide layer. The example method also includes annealing the substrate and the at least one AlGaAs oxide or InAlP oxide.
摘要:
Disclosed is a method of doping an oxide. The example method includes forming at least one of an AlGaAs oxide or an InAlP oxide on a GaAs substrate, and incorporating Erbium into the at least one AlGaAs oxide or InAlP oxide via ion implantation to form an Erbium-doped oxide layer. The example method also includes annealing the substrate and the at least one AlGaAs oxide or InAlP oxide.