Abstract:
The invention relates to a method of determining mainly the compressibility number K, the standard volumetric gross calorific value Hv,n and the standard density ρn of test gases using values determined from a spectrum of the test gases. The invention describes various approaches of translating the values for determining the desired values using the data of the spectrum in the operational condition to the standard reference condition using two-step iteration processes without having to subject the test gases to time-consuming treatments. The invention further relates to devices for determining the values required for the methods and which further develop devices for carrying out the methods.
Abstract translation:本发明涉及一种使用确定的值来确定测试气体的压缩性数K,标准体积总热值H H v,n N和标准密度r H n N n N的方法 从一系列测试气体。 本发明描述了使用两步迭代过程使用操作条件下的频谱数据到标准参考条件来将用于确定期望值的值转换的各种方法,而不必对测试气体进行耗时的处理。 本发明还涉及用于确定所述方法所需的值并进一步开发用于执行所述方法的装置的装置。
Abstract:
Weak signals scattered from analytes at multiple wavelengths can be summed to illuminate either a single detector or a multiplicity of detectors, offering the possibility of concentrating the spectral energy on a smaller total detector area. In addition, a method is disclosed whereby a calibration of the resulting signal for a given analyte can be obtained by means of measuring the quantity of water in the sample volume and by means of measuring the salinity of the fluid in the sample volume.
Abstract:
Illuminators and systems are provided that permit the production of a plurality of beams of electromagnetic radiation having selected peak wavelength, bandwidth, intensity, pulse frequency and pulse duration and the beams being coordinately controlled. Multiple beam illuminators can use either filter elements arranged into filter arrays, or tunable lasers, monochromators, LEDs, LCDs, tunable filters and the like or any other source having characteristic wavelength properties. Multiple clocked sources can be adapted to regulate a variety of variables of output beams. Variables that can be coordinately controlled include mean wavelength, wavelength bandwidth, beam intensity, duration, and time of onset and termination of each beam. Multiple output beams permit the coordinated illumination of a target, and optional sensors provide feedback regarding the effects of therapy. Computer storage devices, programs, and controllers can provide easy selection of the characteristics of the output beams. Output beams can have a variety of different shapes and configurations, depending on the desired application. Use of multiple clocked illuminators can improve electromagnetic therapy for a variety of disorders involving abnormal function of excitable tissues, including nerves, muscles and blood vessels.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (64-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially reel by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate change during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
This invention relates to a method, device and apparatus for digitizing electromagnetic radiation measurements by control of camera shutter speed. The invention uses an Electromagnetic Radiation Sensitive Device (ERSD), such as for example a camera system containing a CMOS- or a CCD-image chip, to perform precise measurements by high-resolution digital control of the shutter speed. A constant output value is obtained from the ERSD such that any non-linearity and range limitation of the ERSD output is circumvented. The measurement methods and system are applied to chemical tests and analytes, which are used for diagnostic purposes. The method can be used to measure reflectance, transmittance, fluorescence and turbidity.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135° to 225°, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
An optic device with a variable operating mode comprises a micromirror which can be obscured by means of an electrostatically controlled microshutter. In the operating condition of the microshutter, the petal of this adheres over a substrate to allow a beam of light to reach the mirror. In the condition at rest, the petal is curled up and one of its surfaces receives the beam of light and reflects it in all directions, at the same time preventing this from reaching the mirror.
Abstract:
The present invention is a dispersive, diffraction grating, NIR spectrometer that automatically calibrates the wavelength scale of the instrument without the need for external wavelength calibration materials. The invention results from the novel combination of: 1) a low power HenullNe laser at right angles to the source beam of the spectrometer; 2) a folding mirror to redirect the collimated laser beam so that it is parallel to the source beam; 3) the tendency of diffraction gratings to produce overlapping spectra of higher orders; 4) a nullpolka dotnull beam splitter to redirect the majority of the laser beam toward the reference detector; 5) PbS detectors and 6) a software routine written in Lab VIEW that automatically corrects the wavelength scale of the instrument from the positions of the 632.8 nm laser line in the spectrum.
Abstract:
A spectrophotometric instrument including a source of measurement light signals having measurement light wavelengths, and a probe having a tissue-engaging surface, a plurality of send fibers coupled to the measurement light signal source for transmitting the measurement light signals to the tissue-engaging surface, and a plurality of receive fibers for receiving light including the measurement light signals after the measurement light has been transmitted through the tissue. The instrument also has reference signal optics coupled to the measurement light signal between the measurement light signal source and the tissue-engaging surface for transmitting a reference light signal portion of the measurement light signal, a detector for generating electrical signals representative of the measurement light signals and the reference light signals, optical paths for coupling the measurement light signal from the receive fibers and the reference light signal portion from the reference signal optics to the detector, and an optical path control for selectively allowing either the measurement light signal portion or the reference light signal portion to the detector. The optical path control enables the detector to output a reference light sample value when the reference light signal portion is coupled to the detector, and to output a measurement light sample value when the measurement light signal portion is coupled to the detector.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135° to 225°, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.