Abstract:
This invention discloses a process for forming durable anti-stiction surfaces on micromachined structures while they are still in wafer form (i.e., before they are separated into discrete devices for assembly into packages). This process involves the vapor deposition of a material to create a low stiction surface. It also discloses chemicals which are effective in imparting an anti-stiction property to the chip. These include polyphenylsiloxanes, silanol terminated phenylsiloxanes and similar materials.
Abstract:
Embodiments of the present invention generally relate to a process of forming a device that has an improved usable lifetime due to the addition of a gas-phase lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
Abstract:
Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
Abstract:
The present invention provides unique methods of coating and novel coatings for MEMS devices. In general a two step process includes the coating of a first silane onto a substrate surface followed by a second treatment with or without a second silane and elevated temperatures.
Abstract:
A composite wafer for fabricating MEMS devices is provided with a plurality of antistiction bumps, buried under a device layer of the composite wafer. The antistiction bumps are prepared lithographically, by patterning an antistiction material prior to the assembly of the composite wafer.
Abstract:
A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure. An anti-stiction layer is disposed on at least a portion of the mechanical structure. An anti-stiction channel is formed in at least one of the substrate and the encapsulation structure. A cap has at least one preform portion disposed over or in at least a portion of the anti-stiction channel to seal the anti-stiction channel, at least in part.
Abstract:
Methods and apparatus are provided for preparing sensing fingers for use in a highly integrated accelerometer. The method includes steps for forming a tungsten/tungsten silicide coating on a silicon finger. The tungsten/tungsten silicide coating adds mass to the silicon finger. The method includes steps of forming silicon fingers from layers of silicon, oxides, and capping material. The silicon fingers are then exposed to tungsten containing gases under conditions to promote the formation of a tungsten silicide seed layer on the exposed silicon surfaces. The tungsten layer is then grown to a desired thickness through a growth step. The coated silicon fingers display improved resistance to stiction as compared to uncoated silicon fingers.
Abstract:
The micro-mechanical structure includes an anti-stiction layer formed by plasma enhanced chemical vapor deposition and plasma etching. The anti-stiction layer is selectively formed on only the area of a substrate other than the top of a movable structure and a part of an electrode that is subsequently bonded to a wire.
Abstract:
Provided is a method of manufacturing an acceleration sensor capable of preventing bonding of a movable electrode and a fixed electrode. A stain film 8 for reducing bonding adsorption force is formed on side surfaces of a movable electrode 1, fixed electrodes 2a and 2b and a frame portion 7. In the case in which the movable electrode 1 and the fixed electrodes 2a and 2b are to be formed of a silicon substrate, it is preferable that an insulating film having irregular bonding of silicon atoms and oxygen atoms and irregular bonding of silicon atoms and nitrogen atoms should be employed for the stain film 8, for example. The formation of the stain film 8 can suppress the bonding between the movable electrode 1 and the fixed electrodes 2a and 2b even if Coulomb force is generated between both electrodes when the silicon substrate and a back side substrate 4 are joined by using an anode junction method.
Abstract:
A micro-electro mechanical switch having a restoring force sufficiently large to overcome stiction is described. The switch is provided with a deflectable conductive beam and multiple electrodes coated with an elastically deformable conductive layer. A restoring force which is initially generated by a single spring constant k0 upon the application of a control voltage between the deflectable beam and a control electrode coplanar to the contact electrodes is supplemented by adding to k0 additional spring constants k1, . . . , kn provided by the deformable layers, once the switch nears closure and the layers compress. In another embodiment, deformable, spring-like elements are used in lieu of the deformable layers. In an additional embodiment, the compressible layers or deformable spring-like elements are affixed to the deflecting beam facing the switch electrodes