Abstract:
There is provided a light receiving device including a polarization dispersing section that disperses a polarization direction of incoming light into a plurality of polarization directions, a light collecting section that has a metal pattern shaped like concentric circles on a surface thereof, where the light collecting section collects light that has passed through the polarization dispersing section, and a light receiving section that receives the light collected by the light collecting section. Also provided are a light receiving device manufacturing method and a light receiving method. The light collecting section may have a surface plasmon antenna that has the metal pattern shaped like the concentric circles on a surface thereof, and the light receiving section may receive the light collected toward a center of the concentric circles of the metal pattern of the light collecting section, through a hole at the center of the concentric circles, on a rear side of the light collecting section.
Abstract:
The present invention relates to a solid-state based light source, a corresponding circuitry and a method of emitting light, including one or more light source elements for generating light, a first sensor for receiving light emitted by the light source elements and ambient light and for generating a first sensor signal (S1) representing the received light, a second sensor for only receiving ambient light and for generating a second sensor signal (S2) representing the received ambient light. Moreover, the solid-state based light source comprises a control unit for receiving the first and the second sensor signals (S1, S2) and for generating control signals (Sc) for controlling the light source elements, based on the difference between the first and the second sensor signals (S1, S2), to compensate for the influence of the ambient light.
Abstract:
A light beam receiver includes a plurality of light beam detector elements, a plurality of integrator circuits that receive signals from the light beam detector elements, and a signal integral limiting integration time controller that is in communication with at least two of the integrator circuits so that an analysis of the light beam reception is determined. One embodiment provides a self-calibration function, using a plurality of light beam detector elements that generate output signals when receiving a light beam upon the light beam detector elements, an evaluation/control circuit that receives the output signals and is configured to substantially determine a position where the light beam impacts on the light beam detector elements, and at least one calibration light source that emits at least one light pulse that is coupled to the light beam detector elements. The light beam receiver performs a self-calibration function using the calibration light source.
Abstract:
A high time-resolution ultrasensitive optical detector, using a planar waveguide leakage mode, and methods for making the detector. The detector includes a stacking with a dielectric substrate, a detection element, first and second dielectric layers, and a dielectric superstrate configured to send photon(s) into the light guide formed by the first layer. The thicknesses of the layers is chosen to enable a resonant coupling between the photon(s) and a leakage mode of the guide, the stacking having an absorption resonance linked to the leakage mode for a given polarization of the photon(s).
Abstract:
An optical element is provided, which is small in distortion when at least three optical members including a resin layer sandwiched by the optical members are cemented together, has a high environmental resistance and optical performance, and has an excellent chromatic aberration correction effect. In the optical element, the resin layer is formed on one of light incident/exit surfaces of a first optical member, and a second optical member is cemented to the resin layer by a bonding material. A condition of φg
Abstract translation:提供一种光学元件,当至少三个包括由光学构件夹持的树脂层的光学构件粘合在一起时,其变形小,具有高的耐环境性和光学性能,并且具有优异的色差校正效果。 在光学元件中,树脂层形成在第一光学构件的光入射/出射表面中的一个上,并且第二光学构件通过接合材料胶合到树脂层。 满足&phgr; g <&phgr r的条件,其中&phgr; r表示树脂层的外径,&phgg表示粘合到树脂层的第二光学部件的表面的有效区域直径。
Abstract:
A light source having a first mixing chamber, a light pipe structure, and a controller is disclosed. The first mixing chamber includes a first plurality of LEDs, the first mixing chamber having a first transparent window through which light from the first plurality of LEDs exits the first mixing chamber. The light pipe structure has a first end optically coupled to the window such that light from the first plurality of LEDs enters the first end and a second end through which the light exits. The controller determines the power that is applied to the first plurality of LEDs and includes a photodetector optically coupled to the second end of the light pipe structure. The photodetector generates signals indicative of an intensity of light generated by the LEDs, the controller causing the LEDs to be powered such that the signal matches a target value.
Abstract:
An optical sensor device for detecting ambient light is adapted to be coupled to a pane (10), in particular to a windshield of a motor vehicle. The optical sensor device has a sensor unit which includes at least one light receiver (26) and a lens plate (12). By means of the sensor unit, an ambient light beam having entered the pane (10) is coupled out of the pane (10) and directed onto the light receiver (26). On a surface (12b) which faces the pane (10), the lens plate (12) includes a first Fresnel prism structure (22) having a plurality of individual structures (24). The individual structures (24) of the first Fresnel prism structure (22) are designed such that they deflect the light beam at different angles.
Abstract:
A room temperature operation polycrystalline infrared responsive photodetector, manufactured by a process, comprising the steps of patterning vacuum-deposited material and dry-etching a photonic crystal structure with resonant coupling tuned to long wavelengths.
Abstract:
This optical tomographic imaging system comprises an optical path length adjustor configured to set a first reference position of a measurement depth direction to an inner edge of a measurement range by adjusting an optical path length of a reference light, and an optical path length switching unit having a preset optical path length that provides a second reference position differing in measurement depth from the first reference position by a predetermined amount and configured to change the optical path length of the reference light or the optical path length of the reflected light adjusted by the optical path length adjustor so as to switch between the first reference position and the second reference position. This system is capable of measuring a measurement region of interest at high resolution, regardless of the position (depth) of the measurement region of interest, in an SS-OCT employing a wavelength-swept light source.
Abstract:
An optical rotary adapter is featured by including: a fixed side optical fiber which is fixedly supported by a fixed sleeve and which has an end surface inclined with respect to a plane perpendicular to the optical axis of the optical fiber; a fixed side collimator lens which is arranged to be separated from the inclined end surface of the fixed side optical fiber by a predetermined interval; a rotation side optical fiber which is fixedly supported substantially at the center of a rotatably supported rotary cylinder, which is arranged to face the fixed side collimator lens, and which has an end surface inclined with respect to a plane perpendicular to the optical axis of the fixed side collimator lens; a rotation side collimator lens which is fixedly supported by the rotary cylinder, and which is arranged between the fixed side collimator lens and the rotation side optical fiber so as to be separated from the inclined end surface of the rotation side optical fiber by a predetermined interval; a second luminous flux optical fiber which guides a second luminous flux having a function different from that of a first luminous flux as a measuring light beam to the inside of the fixed sleeve; and a multiplexing device which is provided between the fixed side collimator lens and the rotation side collimator lens, and which multiplexes the first luminous flux with the second luminous flux.