Abstract:
A semiconductor device includes a plurality of gate trenches, each of which has first inner walls, which face each other in a first direction which is perpendicular to a second direction in which active regions extend, and second inner walls, which face each other in the second direction in which the active regions extends. An isolation layer contacts a gate insulating layer throughout the entire length of the first inner walls of the gate trenches including from entrance portions of the gate trenches to bottom portions of the gate trenches, and a plurality of channel regions are disposed adjacent to the gate insulating layers in the semiconductor substrate along the second inner walls and the bottom portions of the gate trenches.
Abstract:
There are provided a method of forming a fine pattern of a semiconductor device using a silicon germanium sacrificial layer, and a method of forming a self-aligned contact using the same. The method of forming a self-aligned contact of a semiconductor device includes forming a conductive line structure having a conductive material layer, a hard mask layer, and a sidewall spacer on a substrate, and forming a silicon germanium (Si1-xGex) sacrificial layer, which has a height equal to or higher than a height of at least the conductive line structure, on an entire surface of the substrate. Then, a photoresist pattern for defining a contact hole is formed on the sacrificial layer, and the sacrificial layer is dry-etched, thereby forming a contact hole for exposing the substrate. A plurality of contacts for filling the contact hole are formed using polysilicon, and the remained sacrificial layer is wet-etched. Then, the region where the sacrificial layer is removed is filled with silicon oxide, thereby forming a first interlayer insulating layer.
Abstract:
Non-volatile memory devices include a tunnel insulating layer on a channel region of a substrate, a charge-trapping layer pattern on the tunnel insulating layer and a first blocking layer pattern on the charge-trapping layer pattern. Second blocking layer patterns are on the tunnel insulating layer proximate sidewalls of the charge-trapping layer pattern. The second blocking layer patterns are configured to limit lateral diffusion of electrons trapped in the charge-trapping layer pattern. A gate electrode is on the first blocking layer pattern. The second blocking layer patterns may prevent lateral diffusion of the electrons trapped in the charge-trapping layer pattern.
Abstract:
Provided herein are methods of forming a metal oxide layer pattern on a substrate including providing a preliminary metal oxide layer on a substrate; etching the preliminary metal oxide layer to provide a preliminary metal oxide layer pattern, wherein the line width of the preliminary metal oxide layer pattern gradually increases in a vertically downward direction; and etching the preliminary metal oxide layer pattern to form a metal oxide layer pattern in a manner so as to decrease the line width of a lower portion of the preliminary metal oxide layer. The present invention also provides methods of manufacturing a semiconductor device including forming a metal oxide layer and a first conductive layer on a substrate; etching the metal oxide layer to provide a preliminary metal oxide layer pattern, wherein the line width of the preliminary metal oxide layer pattern gradually increase in a vertically downward direction; etching the first conductive layer to provide a first conductive layer pattern; and etching the preliminary metal oxide layer pattern to provide a metal oxide layer pattern in a manner so as to decrease the line width of a lower portion of the preliminary metal oxide layer pattern.
Abstract:
Non-volatile memory devices include a tunnel insulating layer on a channel region of a substrate, a charge-trapping layer pattern on the tunnel insulating layer and a first blocking layer pattern on the charge-trapping layer pattern. Second blocking layer patterns are on the tunnel insulating layer proximate sidewalls of the charge-trapping layer pattern. The second blocking layer patterns are configured to limit lateral diffusion of electrons trapped in the charge-trapping layer pattern. A gate electrode is on the first blocking layer pattern. The second blocking layer patterns may prevent lateral diffusion of the electrons trapped in the charge-trapping layer pattern.
Abstract:
A semiconductor device including a transistor and a method of forming thereof are provided. The semiconductor device comprises a metal gate electrode. A lower portion of the metal gate electrode fills a channel trench formed at a predetermined region of a substrate, and an upper portion of the metal gate electrode protrudes on the substrate. A gate insulating layer is interposed between inner sidewalls and a bottom surface of the channel trench, and the metal gate electrode. Source/drain regions are formed at the substrate in both sides of the metal gate electrode.
Abstract:
Methods of forming capacitor structures may include forming an insulating layer on a substrate, forming a first capacitor electrode on the insulating layer, forming a capacitor dielectric layer on portions of the first capacitor electrode, and forming a second capacitor electrode on the capacitor dielectric layer such that the capacitor dielectric layer is between the first and second capacitor electrodes. More particularly, the first capacitor electrode may define a cavity therein wherein the cavity has a first portion parallel with respect to the substrate and a second portion perpendicular with respect to the substrate. Related structures are also discussed.
Abstract:
A semiconductor device includes a plurality of gate trenches, each of which has first inner walls, which face each other in a first direction which is perpendicular to a second direction in which active regions extend, and second inner walls, which face each other in the second direction in which the active regions extends. An isolation layer contacts a gate insulating layer throughout the entire length of the first inner walls of the gate trenches including from entrance portions of the gate trenches to bottom portions of the gate trenches, and a plurality of channel regions are disposed adjacent to the gate insulating layers in the semiconductor substrate along the second inner walls and the bottom portions of the gate trenches.
Abstract:
In one embodiment, a method of processing a semiconductor substrate includes measuring a state of a processing chamber contamination before processing each semiconductor substrate. A process condition is then changed responsive to the state of chamber contamination to compensate for an influence of the state of chamber contamination on the process condition. If the change in process condition is outside of predetermined margin, a warning may be generated and the process may be stopped.
Abstract:
A semiconductor device including a bit line formed using a damascene technique and a method of fabricating the same. The method includes forming an insulating layer on a substrate, forming a groove by etching the insulating layer to a partial depth, and forming spacers on the inner walls of the groove. An opening is formed by etching the insulating layer disposed under the groove using the spacers as an etch mask. A conductive layer is formed to fill the opening. A capping layer is formed to fill the groove.