Abstract:
An apparatus and method for displaying a lock screen including a character object having a motion effect in a terminal equipped with a touch screen. The method includes locking the touch screen and displaying the lock screen including the character object having the motion effect on a preset background image. Upon generation of a touch input, determining whether the touch input is for unlocking the touch screen, and if the touch input is for unlocking the touch screen, unlocking the touch screen and controlling the character object to perform a preset action indicating the unlocking of the touch screen.
Abstract:
Provided is an optical device module that can improve miniaturization and integration. The optical device module includes a semiconductor optical amplifier having a buried structure and including a first active layer buried in a clad layer disposed on a first substrate, an optical modulator in which a sidewall of a second active layer disposed in a direction of the first active layer on a second substrate junctioned to the first substrate is exposed, the optical modulator having a ridge structure, and at least one multi-mode interference coupler in which the second active layer junctioned to the first active layer is buried in the clad layer, the multi-mode interference coupler sharing the second active layer on the second substrate between the optical modulator and the semiconductor optical amplifier and integrated with the second optical device.
Abstract:
A medium supply unit of an image forming apparatus, the medium supply unit may include: a main body housing; a tray connected to the main body housing and loading a printing-target medium therein; an activating shaft connected to the main body housing and being rotated in a predetermined direction by an activating force of an activating source; an intermediate member supported by one end of the activating shaft to deliver a rotating force of the activating shaft; a first elastic member having one end connected to the intermediate member and the other end supported by the activating shaft; and elastically biasing the intermediate member in a direction facing the printing-target medium according to a rotation of the activating shaft; and a roller unit having a roller unit housing that is attachable to the intermediate member and at least one roller that is supported by the roller unit housing and picks up and supplies printing-target media loaded in the tray; and configured to deliver to the roller(s) an elastic force of the first elastic member and a rotating force of the activating shaft when the activating shaft is rotated.
Abstract:
Provided are a semiconductor light emitting device having a nano pattern and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes: a semiconductor layer comprising a plurality of nano patterns, wherein the plurality of nano patterns are formed inside the semiconductor layer; and an active layer formed on the semiconductor layer. The optical output efficiency is increased and inner defects of the semiconductor light emitting device are reduced.
Abstract:
Provided is an optical device having a strained buried channel area. The optical device includes: a semiconductor substrate of a first conductive type; a gate insulating layer formed on the semiconductor substrate; a gate of a second conductive type opposite to the first conductive type, formed on the gate insulating layer; a high density dopant diffusion area formed in the semiconductor substrate under the gate and doped with a first conductive type dopant having a higher density than the semiconductor substrate; a strained buried channel area formed of a semiconductor material having a different lattice parameter from a material of which the semiconductor substrate is formed and extending between the gate insulating layer and the semiconductor substrate to contact the high density dopant diffusion area; and a semiconductor cap layer formed between the gate insulating layer and the strained buried channel area.
Abstract:
A degree of voicing is extracted using the characteristic of harmonic peaks existing in a constant period by converting an input speech or audio signal to a speech signal of the frequency domain, selecting the greatest peak in a first pitch period of the converted speech signal as a harmonic peak, thereafter selecting a peak having the greatest spectral value among peaks existing in each peak search range of the speech signal as a harmonic peak, extracting harmonic spectral envelope information by performing interpolation of the selected harmonic peaks, extracting non-harmonic spectral envelope information by performing interpolation of the non-harmonic peaks, and comparing the two pieces of envelope information to each other.
Abstract:
Provided is a vertical semiconductor light-emitting device and a method of manufacturing the same. The method may include sequentially forming a lower clad layer, an active layer, and an upper clad layer on a substrate to form a semiconductor layer and forming first electrode layers on the upper clad layer. A metal support layer may be formed on each of the first electrode layers and a trench may be formed between the first electrode layers. The substrate may be removed and a second electrode layer may be formed on the lower clad layer.
Abstract:
A method for recognizing a subject motion using a camera is provided, in which each of the previous and current image frames received from the camera is split into multiple image blocks, motion blocks are detected among the image blocks based on a difference between previous and current pixel values for each of the image frames, a motion center is detected based on positions of the motion blocks for each image frame, and the subject motion appearing in the previous and current image frames is recognized based on the motion centers of the previous and current image frames.
Abstract:
Provided are a high-efficiency solar cell, which converts light energy of incident light into electrical energy, and a method of manufacturing the same. An upper ohmic layer is formed at a predetermined tilt angle less than 45° and an ohmic electrode is deposited on the upper ohmic layer so as to reduce shadow loss due to the ohmic electrode and lessen contact resistance.
Abstract:
The present invention relates to a process for preparing polyethylene naphthalate, comprising the steps of: esterifying 2,6-naphthalene dicarboxylic acid and ethylene glycol, or glycols using the two materials as major material to obtain prepolymer which comprises bis(beta-hydroxyethyl)naphthalate or low polymer as main material; and performing polycondensation reaction to thereby prepare polyethylene naphthalate. The process of the present invention has advantages of: enabling esterification with a low molar ratio of ethylene glycol to reduce reaction time, thereby increasing process efficiency; minimizing formation of side reaction products to improve properties; and preventing deterioration of the products by performing polycondensation at a low temperature to thereby obtain polyethylene naphthalate polymers of high quality.