Abstract:
A non-volatile memory device may include a first wordline on a substrate, an insulating layer on the first wordline, and a second wordline on the insulating layer so that the insulating layer is between the first and second wordlines. A bit pillar may extend adjacent the first wordline, the insulating layer, and the second wordline in a direction perpendicular with respect to a surface of the substrate, and the bit pillar may be electrically conductive. In addition, a first memory cell may include a first resistance changeable element electrically coupled between the first wordline and the bit pillar, and a second memory cell may include a second resistance changeable element electrically coupled between the second wordline and the bit pillar. Related methods and systems are also discussed.
Abstract:
A resistive memory device includes a first electrode, a resistive oxidation structure and a second electrode. The resistive oxidation structure has sets of oxidation layers stacked on the first electrode. Each set is made up of a first metal oxide layer and a second metal oxide layer which is disposed on and is thinner than the first metal oxide layer. The first metal oxidation layer of the first one of the sets of oxidation layers contacts an upper surface of the first electrode. The second electrode is formed on the resistive oxidation structure. The resistance of the oxidation structure can be changed by an electric field.
Abstract:
Semiconductor memory devices include a first storage layer and a second storage layer, each of which includes at least one array, and a control layer for controlling access to the first storage layer and the second storage layer so as to write data to or read data from the array included in the first storage layer or the second storage layer in correspondence to a control signal. A memory capacity of the array included in the first storage layer is different from a memory capacity of the array included in the second storage layer.
Abstract:
A nonvolatile memory device, a method of fabricating the nonvolatile memory device and a processing system including the nonvolatile memory device. The nonvolatile memory device may include a plurality of internal electrodes that extend in a direction substantially perpendicular to a face of a substrate, a plurality of first external electrodes that extend substantially in parallel with the face of the substrate, and a plurality of second external electrodes that also extend substantially in parallel with the face of the substrate. Each first external electrode is on a first side of a respective one of the internal electrodes, and each second external electrode is on a second side of a respective one of the internal electrodes. These devices also include a plurality of variable resistors that contact the internal electrodes, the first external electrodes and the second external electrodes.
Abstract:
A non-volatile semiconductor memory device includes a lower electrode, an upper electrode, a resistive layer pattern between the lower electrode and the upper electrode, and a filament seed embedded in the resistive layer pattern. The filament seed includes at least one of a carbon nanotube, a nanowire and a nanoparticle.
Abstract:
A method of programming a non-volatile memory device including a transition metal oxide layer includes applying a first electric pulse to the transition metal oxide layer for a first period to establish a resistance of the transition metal oxide layer and applying a second electric pulse to the transition metal oxide layer for a second period, longer than the first period, to increase the resistance of the transition metal oxide layer. Related devices are also disclosed.
Abstract:
Non-volatile memory cells employing a transition metal oxide layer as a data storage material layer are provided. The non-volatile memory cells include a lower and upper electrodes overlapped with each other. A transition metal oxide layer pattern is provided between the lower and upper electrodes. The transition metal oxide layer pattern is represented by a chemical formula MxOy. In the chemical formula, the characters “M”, “O”, “x” and “y” indicate transition metal, oxygen, a transitional metal composition and an oxygen composition, respectively. The transition metal oxide layer pattern has excessive transition metal content in comparison to a stabilized transition metal oxide layer pattern. Methods of fabricating the non-volatile memory cells are also provided.
Abstract:
Non-volatile memory cells employing a transition metal oxide layer as a data storage material layer are provided. The non-volatile memory cells include a lower and upper electrodes overlapped with each other. A transition metal oxide layer pattern is provided between the lower and upper electrodes. The transition metal oxide layer pattern is represented by a chemical formula MxOy. In the chemical formula, the characters “M”, “O”, “x” and “y” indicate transition metal, oxygen, a transitional metal composition and an oxygen composition, respectively. The transition metal oxide layer pattern has excessive transition metal content in comparison to a stabilized transition metal oxide layer pattern. Methods of fabricating the non-volatile memory cells are also provided.
Abstract translation:提供了使用过渡金属氧化物层作为数据存储材料层的非易失性存储单元。 非易失性存储单元包括彼此重叠的下电极和上电极。 在下电极和上电极之间设置过渡金属氧化物层图案。 过渡金属氧化物层图案由化学式M X x O Y y表示。 在化学式中,字母“M”,“O”,“x”和“y”分别表示过渡金属,氧,过渡金属组成和氧组成。 与稳定的过渡金属氧化物层图案相比,过渡金属氧化物层图案具有过量的过渡金属含量。 还提供了制造非易失性存储单元的方法。
Abstract:
A threshold switching operation method of a nonvolatile memory device may be provided. In the threshold switching operation method of a nonvolatile memory a pulse voltage may be supplied to a metal oxide layer of the nonvolatile memory device. Accordingly, it may be possible to operate the nonvolatile memory device at a lower voltage with lower threshold switching current.
Abstract:
A multi-bit memory cell stores information corresponding to a high resistive state and multiple other resistive states lower than the high resistive state. A resistance of a memory element within the multi-bit memory cell switches from the high resistive state to one of the other multiple resistive states by applying a corresponding current to the memory element.