Abstract:
In a method of forming a crystalline GaN-based material, a first nucleation layer is formed on a substrate at a first temperature, followed with forming a second nucleation layer at a second temperature different from the first temperature. The first and second nucleation layers are composed of AlxInyGa(1-x-y)N. Subsequently, a layer of a crystalline GaN-based compound is epitaxy grown on the second nucleation layer.
Abstract translation:在形成结晶GaN基材料的方法中,在第一温度下在基板上形成第一成核层,随后在与第一温度不同的第二温度下形成第二成核层。 第一和第二成核层由Al x Ga y(1-x-y)N组成。 随后,在第二成核层上生长一层结晶的GaN基化合物外延生长。
Abstract:
A light-emitting device comprising a light-emitting unit including a plurality of first connecting pads, a base substrate including a plurality of second connecting pads, and a plurality of conductive bumps that connect the first connecting pads of the light-emitting unit to the second connecting pads of the base substrate. In the manufacturing process, a reflow process is performed to bond the conductive bumps to the first and second connecting pads. The light-emitting unit is configured to emit a first light radiation upon the application of an electric current flow, and the base substrate is configured to emit a second light radiation when stimulated by the first light radiation.
Abstract:
A method of manufacturing a semiconductor laser device is provided. First, a first mask layer is formed on an epitaxial structure to define a protrudent area in a ridge structure. Thereafter, a conformal second mask layer is formed over the epitaxial structure to cover the first mask layer. A third mask layer is formed over the second mask layer. The exposed second mask layer is removed. Using the first and the third mask layers as etching masks, a portion of the epitaxial structure is removed. The third mask layer and the remaining second mask layer are removed to form the ridge structure. An insulation layer is formed on the epitaxial structure and then the first mask layer is removed to expose the top surface of the protrudent area. A conductive layer is formed on the epitaxial structure such that it contacts with the top surface of the protrudent area.
Abstract:
A method for the growth of semiconducting nitrides, such as GaN, InN, AlN, and their alloys, in an ultra-high vacuum chamber, wherein low energy atomic nitrogen is generated by a plasma-excited radical atom source, the atom beam is introduced to the heated substrate within a short distance, other gaseous reactants and dopants, such as TMGa, TMIn, TMAj, DEZn, CP.sub.2 Mg, SiH.sub.4, and similar organmetallic and hydride sources, are injected from a circular injector located between the substrate and the atom source, and therefore large area epitaxy with high growth rate is obtained.
Abstract:
An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
Abstract:
The present invention discloses an LED structure, wherein an N-type current spreading layer is interposed between N-type semiconductor layers to uniformly distribute current flowing through the N-type semiconductor layer. The N-type current spreading layer includes at least three sub-layers stacked in a sequence of from a lower band gap to a higher band gap, wherein the sub-layer having the lower band gap is near the substrate, and the sub-layer having the higher band gap is near the light emitting layer. Each sub-layer of the N-type current spreading layer is expressed by a general formula InxAlyGa(1-x-y)N, wherein 0≦x≦1, 0≦y≦1, and 0≦x+y≦1.
Abstract translation:本发明公开了一种LED结构,其中N型电流扩展层插入在N型半导体层之间以均匀地分布流过N型半导体层的电流。 N型电流扩展层包括从低带隙到较高带隙的顺序堆叠的至少三个子层,其中具有较低带隙的子层在衬底附近,并且子层 具有较高带隙的发光层靠近发光层。 N型电流扩展层的每个子层由通式In x Al y Ga(1-x-y)N表示,其中0≦̸ x≦̸ 1,0& nlE; y≦̸ 1和0≦̸ x + y≦̸
Abstract:
A wavelength division multiplexing and optical modulation apparatus includes at least two modulation region-added grating-assisted cross-state directional coupler units and a modulation region-added cross-state directional coupler. The modulation region-added grating-assisted cross-state directional coupler units and the modulation region-added cross-state directional coupler unit are connected to one another in serial. Each of the modulation region-added grating-assisted cross-state directional coupler units each includes a modulation region-added cross-state directional coupler, a grating and a modulation region. The modulation region-added cross-state directional coupler unit includes an output waveguide, an input waveguide and a modulation region.
Abstract:
A method for fabricating a semi-polar nitride semiconductor is disclosed, comprising following steps: firstly, a (001) substrate tilted at 7 degrees and having a plurality of V-like grooves is provided, and tilted surfaces of the V-like groove are a (111) surface at 61.7 degrees and a ( 1 11) surface at 47.7 degrees; next, a surface of said substrate is cleaned by using a deoxidized solution, and then a buffer layer is formed on said substrate to cover said V-like grooves; then, said buffer layer is covered with an oxide layer except for said buffer layer formed on said (111) surface at 61.7 degrees; and finally, said semi-polar nitride semiconductor is formed on said buffer layer having (111) surface at 61.7 degrees to enhance the quality of said semi-polar nitride semiconductor.
Abstract:
A method of growing nitride semiconductor material and particularly a method of growing Indium nitride is disclosed can increase surface flatness of a nitride semiconductor material and decrease density of V-defects therein. Further, the method can increase light emission efficiency of a quantum well or quantum dots of the produced LED as well as greatly increase yield. The method is also applicable to the fabrications of electronic devices made of nitride semiconductor material and diodes of high breakdown voltage for rectification. The method can greatly increase surface flatness of semiconductor material for HBT, thereby increasing quality of the produced semiconductor devices.
Abstract:
A quantum dot optoelectronic device has an overgrown layer containing antimony (Sb). The optical characteristics and thermal stability of the optoelectronic device are thus greatly enhanced due to the improved crystal quality and carrier confinement of the quantum dot structure.