Abstract:
A folding type package includes a body including first and second parts to face each other when the body is folded to enclose a product, at least one product housing part formed at the body, and a buffer part extending from the product housing part to secure a buffer space to buffer a shock applied to the product.
Abstract:
One embodiment exemplarily described herein can be generally characterized as a heat sink for an electronic component. The heat sink may include a main body thermally contactable to an electronic component; at least one fin thermally contacted with the main body; and a confining member. The at least one fin and the confining member may be cooperatively engaged such that the at least one fin is moveable between a first position relative to a longitudinal axis of the main body and a second position relative to the longitudinal axis of the relative to the main body.
Abstract:
A fan-out unit which can control a resistance difference among channels with efficient space utilization and a thin-film transistor (TFT) array substrate having the fan-out unit are presented. The fan-out unit includes: an insulating substrate; a first wiring layer which is formed on the insulating substrate and connected to a pad; a second wiring layer which is formed on the insulating substrate and connected to a TFT; and a resistance controller which is connected between the first wiring layer and the second wiring layer and includes a plurality of first resistors extending parallel to the first wiring layer and a plurality of second resistors extending perpendicular to the first resistors and alternately connecting to the first resistors, wherein the first resistors are longer than the second resistors.
Abstract:
A reworkable passive element embedded printed circuit board (PCB) including a board member, first and second fillings, and a first passive element. The board member has first and second through holes which are spaced apart from each other. The first and second fillings are buried in the first and second through holes, respectively, and formed of a reflowable conductive material. The first passive element includes first and second electrodes. A first insertion groove is formed in a portion of a surface of the board member between the first and second through holes and portions of the first and second fillings. The first passive element is mounted on the first insertion groove. The first electrode includes a bottom surface and a side contacting the first filling and an exposed upper surface. The second electrode comprises a bottom surface and a side contacting the second filling and an exposed upper surface.
Abstract:
A collection unit includes an exhaust conduit providing a path through which a process gas flows, a trap installed in the exhaust conduit, and a collection line connected to the trap. The trap has an inlet through which particles in the process are introduced into the trap, and the collection line penetrates a portion of the exhaust conduit to extend toward an outside region of the exhaust conduit. An apparatus including the collection unit and a method for collecting particles using the same are also provided.
Abstract:
Disclosed are a hinge unit which couples a first member and a second member, the hinge unit including: a conic shaft which is coupled to the first member, and comprises a hinge pivot, a conic unit of a truncated cone shape, the radius of which is extended in an end area of the hinge pivot, and a first rocking unit formed to an outer surface of the conic unit; and a conic sleeve which is coupled to the second member, and comprises a sleeve main body formed with a conic accommodating unit having a shape corresponding to the conic unit in an inner part of the conic accommodating unit, and a second rocking unit formed to an inner surface of the conic accommodating unit to be coupled with the first rocking unit.
Abstract:
A complementary metal-oxide-semiconductor image sensor may include: a semiconductor substrate; a photodiode formed on a first portion of the semiconductor substrate; a transfer gate formed on the semiconductor substrate, near the photodiode, to transfer optical charges accumulated in the photodiode; a floating diffusion area formed on a second portion of the semiconductor substrate, on an opposite side of the transfer gate from the photodiode, to accommodate the optical charges; and/or a channel area formed under the transfer gate and contacting a side of the photodiode to transfer the optical charges. The transfer gate may be formed, at least in part, of transparent material. A method of manufacturing a complimentary metal-oxide-semiconductor image sensor may include: forming the photodiode; forming the floating diffusion area, separate from the photodiode; and/or forming the transfer gate, near the photodiode, to transfer optical charges accumulated in the photodiode.
Abstract:
A hard disk drive, in which a flexible printed circuit board (FPC) bracket is readily assembled and sealed to a base together with a gasket header even though a screw or a sealing tape that involves a screw driver or other assembling tools is not used, or a boss of the base is not tapped.
Abstract:
Disclosed is a ball land structure suitable for use with a semiconductor package. The ball land structure includes a ball land and a barrier on a core. The barrier may be configured to connect to the ball land so as to form a barrier hole between an edge of the ball land and an edge of the barrier thus exposing a portion of the core. A solder mask may be deposited on the ball land and a portion of the core exposed by the barrier hole so as to partially expose the core.
Abstract:
Example embodiments are directed to an antifuse circuit of an inverter type and a method of programming the same. The antifuse circuit has improved corrosion resistance, utilizes lesser chip area and can be programmed at a low voltage. The antifuse circuit includes a PMOS transistor with the gate coupled to a drive power voltage terminal and the source coupled to an anti-pad terminal. During programming the PMOS transistor is off and the source receives an alternating current. Programming the antifuse circuit involves trapping a plurality of electron in an STI region as a result of gate-induced drain leakage. The antifuse circuit also includes an NMOS transistor with the drain connected to the drain of the PMOS transistor, the source connected to ground and the gate connected to a program control signal. The antifuse circuit results in reliable fuse programming at a low voltage by using the PMOS transistor as an anti-fuse device.