Abstract:
Provided are a fuse structure and a method for manufacturing the fuse structure. In one example, the method includes providing a multilayer interconnect structure (MLI) over a semiconductor substrate. The MLI includes multiple fuse connection and bonding connection features. A passivation layer is formed over the MLI and patterned to form openings, with each opening being aligned with one of the fuse connection or bonding connection features. A conductive layer is formed on the passivation layer and in the openings. The conductive layer is patterned to form bonding features and fuse structures. Each bonding feature is in contact with one of the bonding connection features, and each fuse structure is in contact with two of the fuse connection features. A cap dielectric layer is formed over the fuse structures and patterned to expose at least one of the bonding features while leaving the fuse structures covered.
Abstract:
The invention provides a cyclic single-chain trispecific antibody against human tumor. It comprises three parts. The first part is an anti-tumor Fab antibody, an anti-tumor single-domain antibody or an scFv. The second part is a reshaped Fab antibody against human CD3, a reshaped single-domain antibody against human CD3 or a reshaped scFv against human CD3. The third part is a reshaped Fab antibody against human CD28, a reshaped single-domain antibody against human CD28 or a reshaped scFv against human CD28. The present invention also offers the DNA sequence coding for this trispecific antibody, expression vectors containing this DNA sequence and host cells (E. coli) containing the vectors.
Abstract:
An organic device including a substrate or a dielectric layer; a photoresist layer formed on the substrate or dielectric layer, wherein the photoresist layer is provided with a plurality of microgrooves having an alignment direction; an organic semiconducting layer having alignment formed on the photoresist layer, wherein the organic semiconducting layer aligns according to the alignment direction of the microgrooves of the photoresist layer; and an electrode.
Abstract:
A medicament for use in treating hypertension. The medicament is a glycoprotein, a mixture of polysaccharide and protein, a polypeptide or a protein.
Abstract:
A photovoltaic device can include an intrinsic metal layer adjacent to a semiconductor absorber layer; and a doped metal contact layer adjacent to the intrinsic metal layer, where the doped metal contact layer includes a metal base material and a dopant.
Abstract:
A functional electrical stimulation system having a boost module to raise an output voltage of a primary power to a first preset voltage, an energy storage module, connected to the boost module, configured to store electrical energy of the first preset voltage, a central control unit configured to generate data packets of electrical stimulation parameters, and an electrical stimulation output channel, connected to the energy storage module, configured to receive the data packets of electrical stimulation parameters, analyze the electrical stimulation parameters from the data packets, convert electrical energy stored in the energy storage module to an electrical stimulation pulse corresponding to the electrical stimulation parameters and apply the electrical stimulation pulse to a part of a user. The functional electrical stimulation system can enhance flexibility and autonomy of an electrical stimulation pulse so that the user can select a personalized electrical stimulation pulse type according to his/her actual conditions.
Abstract:
A portable electronic device including a main body and a connector module is provided. The main body has a central region and a fringe region. A thickness of the central region is greater than a thickness of the fringe region, and the central region has a containing cavity. The connector module is slidably disposed in the containing cavity of the main body, and moves between an operation position and an accommodation position in relative to the main body.
Abstract:
An electrostatic electroacoustic device comprising a first electrode configured to receive an audio signal, a second electrode configured to receive the audio signal, a first electret between the first electrode and the second electrode, the first electret including at least one dielectric layer containing electrostatic charges, a second electret between the first electrode and the second electrode, the second electret including at least one dielectric layer containing electrostatic charges, and a conductive layer sandwiched between the first electret and the second electret, the conductive layer, the first electret and the second electret being capable of vibratory motion relative to the first electrode and the second electrode based on the audio signal.
Abstract:
A charge control circuit includes a resistance module, a voltage comparing module, and a charge control module. The resistance module includes a thermistor, and the resistance of the thermistor varies according to the temperature of a battery. The voltage comparing module is connected to the resistance module. The voltage comparing module compares the voltage of the thermistor with upper and lower voltage limits to determine whether the temperature of the battery is in the charge temperature range. If the voltage comparing module determines the voltage of the thermistor is outside the allowed range, the comparing module outputs a control signal to control the charge control module to stop charging the battery.