Abstract:
In a method and a device for triggering a request for taking control (RTC), a driver of a vehicle having adaptive cruise control is signaled that the adaptive cruise control system may not be capable of controlling a driving situation, and that the driver may have to intervene, the signaling of the driver being generated in accordance with at least two vehicle variables, whereby the probability of a false alarm by the system is reduced, and the triggering of the RTC is adapted to the instantaneous vehicle speed.
Abstract:
A method for interrupting a speed control or vehicle to vehicle ranging of a motor vehicle's control system, in which the system passes over into the standby mode with the aid of a predefined algorithm after the switching-off of the active control. A linear function for the acceleration in the case of propulsion as well as the braking case is provided as the algorithm. In an alternative embodiment using a step function having appropriately designed steps is provided. This achieves in an advantageous manner a soft transition from active control operation to the standby mode.
Abstract:
The invention is based on an adaptive transmission control wherein changes in the gear ratio of the automatic transmission are determined in dependence upon the detected position of the accelerator pedal actuated by the driver or variables associated therewith and in dependence upon the vehicle straight-line speed and/or the output rpm of the transmission and/or the motor rpm or variables associated therewith. Also, an adaptive variable is determined which adapts the changes of the transmission gear ratio at least to the driving situation then present. The essence of the invention is that the path data of a navigation system is used to determine the above-mentioned adaptation variable. The navigation system is a known map-supported navigation system. In this way, it is advantageously possible to precisely detect the present as well as future driving and environmental situations to which the vehicle is just then subjected or will be subjected in the near future. Accordingly, a very precise estimate of the then existing driving or environmental situation is obtained to which the vehicle is just then subjected or will be subjected in the near future. Shifting strategy can be adapted to these present and future driving situations.
Abstract:
A hybrid drive system for a motor vehicle includes an internal combustion engine and at least one electric motor, each driving wheels of the motor vehicle. The internal combustion engine is coupled to the corresponding wheels via a first multispeed transmission. The electric motor is coupled to the corresponding wheels via a second multispeed transmission.
Abstract:
A method for operating a drive device of a motor vehicle, which includes at least one internal combustion engine and at least one electric machine, a driving resistance, in particular an uphill gradient, being ascertained and the internal combustion engine being operated as a function thereof. The internal combustion engine is operated as a function of a driving resistance to be expected, which is determined as a function of an instantaneous driving resistance. A drive device for a motor vehicle is also described.
Abstract:
A hybrid drive (52) of a motor vehicle (50). In the motor vehicle (50), an electric motor (58) acts as the driving force on a first axle (54) and an internal combustion engine (60) as a driving force on a second axle (56). In an operation, in which only the electric motor (58) acts on the first axle (54), a check is made to determine whether the internal combustion engine (60) is to be started to drive the second axle (56), wherein a first set of conditions for a road start, taking into account first criteria, and a second set of conditions for a starter motor start, taking into account second criteria, are defined and checks are made independently of one another to determine whether the first set of conditions for a road start or the second set of conditions for a starter motor start has been met.
Abstract:
In a method for regulating the vehicle speed and the engine speed in a motor vehicle having a manually shifted transmission, if the driver actuates the clutch during ongoing speed regulation, an upshift probability is calculated for the possibility that the driver will select the next higher gear step as a target gear and, when the clutch is actuated, the engine speed is regulated according to a time-dependent function selected on the basis of the upshift probability and the target gear, and the speed regulation is resumed after the release of the clutch.
Abstract:
Input device for a cruise control system in motor vehicles, having an accelerator pedal, a switch for input of a desired speed and a determination device which increases the desired speed as a function of the duration of operation of the switch, wherein the determination device changes the function which determines the increase in the desired speed as a function of the operation of the accelerator pedal.
Abstract:
A method and a device is described as well as a component for controlling a system, in particular in a motor vehicle, the control being implementable in different variants, a component being operable in different variants according to the variants of the control, and the component receiving at least one signal via an interface. The component is introduced into a system environment and adapted to this system environment and/or initialized with this system environment as a system, in that the variant of the system environment is determined. This is done in a system-immanent manner. When the component is first started, the variant is altered and/or preselected one time as a function of the at least one signal, in particular by the component itself. Any other change in and/or selection of the variant following the initial startup is possible only with authorization.
Abstract:
An apparatus for kinesthetic signaling to a driver of a motor vehicle is described. The apparatus signaling the driver if, in the context of a system for controlling vehicle speed, a deliberate shutdown or one occasioned by a malfunction is imminent or exists; or if, in the context of a system for controlling vehicle speed, a preset maximum deceleration value is not sufficient to prevent a collision between the motor vehicle and a preceding vehicle or an obstacle. The apparatus includes a device that modulates a braking setpoint, or a variable derived from it, in such a way that the motor vehicle experiences a temporally fluctuating deceleration that is perceptible by the driver.