摘要:
The present invention provides a method of fabricating a thermally stable polysilicon/high-k dielectric film stack utilizing a deposition method wherein Si-containing precursor gas which includes silicon and hydrogen is diluted with an inert gas such as He so as to significantly reduce the hydrogen content in the resultant polysilicon film. Semiconductor structures such as field effect transistors (FETs) and capacitors which include at least the thermally stable polysilicon/high-k dielectric film stack are also provided herein.
摘要:
A compound metal comprising TiC which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the TiC compound metal. Furthermore, the TiC metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (pMOS) device.
摘要:
A metal gate and high-k dielectric device includes a substrate, an interfacial layer on top of the substrate, a high-k dielectric layer on top of the interfacial layer, a metal film on top of the high-k dielectric layer, a cap layer on top of the metal film and a metal gate layer on top of the cap layer. The thickness of the metal film and the thickness of the cap layer are tuned such that a target concentration of a cap layer material is present at an interface of the metal film and the high-k dielectric layer.
摘要:
The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 Å; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 Å.
摘要:
The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 Å; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 Å.
摘要:
A compound metal comprising MOxNy which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the MOxNy compound metal. Furthermore, the MOxNy metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (pMOS) device. In the above formula, M is a metal selected from Group IVB, VB, VIB or VIIB of the Periodic Table of Elements, x is from about 5 to about 40 atomic % and y is from about 5 to about 40 atomic %.
摘要:
A compound metal comprising MOxNy which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the MOxNy compound metal. Furthermore, the MOxNy metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (PMOS) device. In the above formula, M is a metal selected from Group IVB, VB, VIB or VIIB of the Periodic Table of Elements, x is from about 5 to about 40 atomic % and y is from about 5 to about 40 atomic %.
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.