Abstract:
A device for collecting plant samples includes a punch and die mechanism for taking leaf plugs from plants. The punch itself includes a punch rod coaxially mounted inside a punch tube. In use, the punch tube has a distal end with two, diametrically opposed projections that interact with the formed aperture to cut a plug from a plant leaf. The punch rod then follows to remove a cut leaf plug from the formed aperture. Also included is a hydraulic subsystem for periodically delivering liquid on the punch and die mechanism to prevent plant debris from clogging the device.
Abstract:
A system and method for optically detecting samples held in a solution requires the use of a holding plate that has as many as one-thousand through-hole wells, or more. The solution is suspended in these through-hole wells under surface tension between opposed surfaces of the holding plate. A pneumatic pump is then engaged with the plate to establish a differential pressure (&Dgr;p) between the upper and lower surfaces of the solution that is equal to approximately two tenths of a pound per square inch (0.2 psi). The result is the formation of a convex meniscus on a surface of the solution that causes light passing into the solution to converge and concentrate. This concentration of light, in turn, facilitates optical detection of samples in the solution.
Abstract:
Provided are methods of screening and identification of bio activities and bioactive molecules of interest using a capillary array system. More specifically, disclosed are methods of using optical detection and capillary array-based techniques for screening libraries and recovering bioactive molecules having a desired activity or a nucleic acid sequence encoding such bioactive molecules.
Abstract:
An ophthalmic lens inspection system includes an illumination assembly which generates diffuse light and transmits the diffuse light through an ophthalmic lens disposed in an inspection position, the diffuse light having a diffusivity of between 30.degree. and 50.degree.. An imaging assembly generates a set of signals representing selected portions of the diffuse light transmitted through the ophthalmic lens in the inspection position. A moving mechanism supports the imaging and illumination assemblies for common movement relative to the contact lens, to bring a reference point into alignment with the center of the imaging assembly.
Abstract:
An optical fiber security system includes an optical emitter connected to one end of an optical fiber and a detector connected to the other end. A random signal generator triggers the emitter to output a light pulse signal through the fiber. This generator also simultaneously triggers the detector to receive the light pulse signal. A comparator compares the light pulse signal that is received by the detector with an optimum reference to adjust and conform the emitter output with the reference. Also, a monitor determines whether a particular identifiable characteristic of the light pulse signal is within a predetermined range of values. Whenever there is not a simultaneous emission and detection of the light pulse signal, or whenever the light pulse characteristic is outside the predetermined range of values, the system alarms.
Abstract:
A hand-held portable arthroscope has a camera assembly and a disposable scope assembly rotatably attached to the distal end of the camera assembly. A probe which includes a fiber optic image guide and a plurality of optical illuminating fibers is rotatably mounted on the scope assembly, and is insertable into a body for imaging the internal structure of the body. The illuminating fibers extend through the scope assembly and are connected in light communication with a quartz halogen lamp for illuminating the internal body structure being imaged. To gather light from the illuminated internal structure of a body into which the probe has been inserted, a GRIN rod is attached to the distal end of the image guide. The image guide is bent near its distal end to offset the axis of the GRIN rod from the axis of the camera assembly, to enhance the field of view of the arthroscope when the scope assembly, which supports the image guide with GRIN rod, is rotated. Focussing optics are mounted in the camera assembly in light communication with the image guide. These focussing optics are axially movable within the camera assembly for focussing the image from the image guide. Light which passes through the focussing optics enters a camera head which is also mounted in the camera assembly. The camera head is in turn electrically connected to a video display device for producing an image of the internal structure of the body.
Abstract:
A polymer is prepared by self-assembly of a plurality of monomeric polypeptide units. The polymer tends to form a nanotube and is capable of encapsulating a particular drug molecule. Once encapsulated in the polymer of the present invention, the drug molecule may be delivered to a particular location of human body to effectively cure a disease or treat a symptom.Generally, the monomeric polypeptide unit of the present invention has a sequence found in Pyrodictium abyssi, a microorganism that produces an extracellular network having hollow protein tubes, or a sequence substantially identical thereto. The monomeric polypeptide may be mass produced using recombinant biotechnologies and be polymerized into the polymer of the present invention. One or more additional targeting vector may be attached to the monomeric polypeptide unit or the polymer to facilitate the targeting of the drug molecule that may be held there within. The sequence contained in the monomeric polypeptide unit may be further optimized using one or more technique selected from Gene Site Saturation Mutagenesis and GeneReasembly.
Abstract:
A one-piece wrap-around wrist guard is provided that includes a plurality of flexible plastic supports or stays positioned above and below the wrist. The wrap-around support structure helps absorb and distribute forces from a fall rather than transmitting them to the wrist, arm, elbow and shoulder.
Abstract:
A disposable arthroscope for examining the interior of a joint and for carrying out diagnostic and therapeutic procedures within the joint includes an elongated needle and a cap housing which has a base plate. The proximal end of the needle is mounted on the cap opposite the base plate, and the distal end of the needle extends outwardly from the cap. The needle is a hollow tube which surrounds an image guide and a bundle of illuminating fibers that extend through the tube. A lens is attached to the distal end of the image guide and is slightly angled relative to the longitudinal axis of the needle. The proximal ends of both the image guide and the bundle of illuminating fibers extend from the proximal end of the tube and through the cap for exposure at the surface of the base plate. The base plate of the disposable arthroscope is engageable with a camera and with a light source to position the camera in light communication with the image guide, and to position the light source in light communication with the bundle. With these engagements, the combination of disposable arthroscope, light source and camera generate a visual display of an object that is illuminated by the light source through the bundle of illuminating fibers.
Abstract:
A disposable arthroscope for examining the interior of a joint and for carrying out diagnostic and therapeutic procedures within the joint includes an elongated needle and a cap housing which has a base plate. The proximal end of the needle is mounted on the cap opposite the base plate, and the distal end of the needle extends outwardly from the cap. The needle is a hollow tube which surrounds an image guide and a bundle of illuminating fibers that extend through the tube. A lens is attached to the distal end of the image guide and is slightly angled relative to the longitudinal axis of the needle. The proximal ends of both the image guide and the bundle of illuminating fibers extend from the proximal end of the tube and through the cap for exposure at the surface of the base plate. The base plate of the disposable arthroscope is engageable with a camera and with a light source to position the camera in light communication with the image guide, and to position the light source in light communication with the bundle. With these engagements, the combination of disposable arthroscope, light source and camera generate a visual display of an object that is illuminated by the light source through the bundle of illuminating fibers.