摘要:
Disclosed is an electrochemical gas sensor using micro electro mechanical systems (MEMS). The MEMS electrochemical gas sensor includes: a substrate a lower central region of which is etched by a predetermined thickness; a first insulation film formed on the substrate; a heat emitting resistance body formed on the first insulation film; a second insulation film formed on the heat emitting resistance body; a reference electrode formed in an upper central region of the second insulation film; a solid electrolyte formed on the reference electrode; and a detection electrode formed on the solid electrolyte.
摘要:
Provided is a method of manufacturing porous metal oxide, the method including: preparing a metal-organic framework (MOF) wherein an ion of a metal to be used as a catalyst is linked to an organic ligand; impregnating the MOF with a precursor solution of metal oxide to be manufactured; and thermally treating the metal oxide precursor solution-impregnated MOF to remove the organic ligand. The inventive method of manufacturing porous metal oxide involves the impregnation of a metal oxide precursor solution in a MOF wherein metal ions are uniformly linked to organic ligands and the thermal treatment (calcination) of the metal oxide precursor solution-impregnated MOF to remove the organic ligands.
摘要:
Provided are a molecular electronic device and a method of fabricating the molecular electronic device. The molecular electronic device includes a substrate, an organic dielectric thin film formed over the substrate, a molecular active layer formed on the organic dielectric thin film and having a charge trap site, and an electrode formed on the molecular active layer. The organic dielectric thin film may be immobilized on the electrode or a Si layer by a self-assembled method. The organic dielectric thin film may include first and second molecular layers bound together through hydrogen bonds. An organic compound may be self-assembled over the substrate to form the organic dielectric thin film. The organic compound may include an M′-R-T structure, where M′, R and T represent a thiol or silane derivative, a saturated or unsaturated C1 to C20 hydrocarbon group which is substituted or unsubstituted with fluorine (F), and an amino(—NH2) or carboxyl (—COOH) group, respectively.
摘要:
Provided are a method of manufacturing nanoelectrode lines. The method includes the steps of: sequentially forming an insulating layer, a first photoresist layer, and a drop-shaped second photoresist on a substrate; disposing an imprint mold having a plurality of molding patterns over the second photoresist; applying pressure to the mold to allow the second photoresist to flow into the mold patterns; irradiating ultraviolet (UV) light onto the mold to cure the second photoresist; removing the mold from the cured second photoresist and patterning the second photoresist; patterning the first photoresist layer using the patterned second photoresist as a mask; patterning the insulating layer; and forming a metal layer between the patterned insulating layers. In this method, metal electrode lines are formed between insulating layers using an imprint lithography process, so that nanoelectronic devices can be freed from crosstalk between the metal electrode lines.
摘要:
Provided are a method of manufacturing nanoelectrode lines. The method includes the steps of: sequentially forming an insulating layer, a first photoresist layer, and a drop-shaped second photoresist on a substrate; disposing an imprint mold having a plurality of molding patterns over the second photoresist; applying pressure to the mold to allow the second photoresist to flow into the mold patterns; irradiating ultraviolet (UV) light onto the mold to cure the second photoresist; removing the mold from the cured second photoresist and patterning the second photoresist; patterning the first photoresist layer using the patterned second photoresist as a mask; patterning the insulating layer; and forming a metal layer between the patterned insulating layers. In this method, metal electrode lines are formed between insulating layers using an imprint lithography process, so that nanoelectronic devices can be freed from crosstalk between the metal electrode lines.
摘要:
Provided are a compound for a molecular electronic device which includes a terpyridine-ruthenium organic metal compound including a thiol anchoring group of the formula below, a method of synthesizing the compound and a molecular electronic device including a molecular active layer obtained from the compound. In the formula, R1 and R2 are each a thioacetyl group or a hydrogen atom, at least one of R1 and R2 is a thioacetyl group, and m and n are each integers from 0 to 20. The molecular active layer, which is formed by self-assembling the compound on an electrode surface, composes a switching element and a memory element.
摘要:
Provided are an electron donor-azo-electron acceptor compound having a thiol-based anchoring group, a method of synthesizing the compound, and a molecular electronic device having a molecular active layer formed of the compound. The compound for forming a molecular electronic device includes an azo compound that has a dinitrothiophene group and an aminobenzene group having thiol derivatives. The compound forms a molecular active layer in the molecular electronic devices. The molecular active layer is self-assembled on an electrode using the thiol derivative in the azo compound as an anchoring group. The molecular active layer in the molecular electronic device forms a switching device switching between an on-state and an off-state in response to a voltage applied to electrodes or a memory device storing a predetermined electric signal in response to a voltage applied to the electrodes.