摘要:
A method of fabricating self-aligned gate trench utilizing TTO poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
摘要:
A method for forming a memory device with a recessed gate is disclosed. A substrate with a pad layer thereon is provided. The pad layer and the substrate are patterned to form at least two trenches. A deep trench capacitor is formed in each trench. A protrusion is formed on each deep trench capacitor, wherein a top surface level of each protrusion is higher than that of the pad layer. Spacers are formed on sidewalls of the protrusions, and the pad layer and the substrate are etched using the spacers and the protrusions as a mask to form a recess. A recessed gate is formed in the recess.
摘要:
A method of fabricating a semiconductor device having a trench gate is provided. First, a semiconductor substrate having a trench etch mask thereon is provided. The semiconductor substrate is etched to form a first trench having a first depth using the trench etch mask as a shield. Impurities are doped into the semiconductor substrate through the first trench to form a doped region. The doped region and the semiconductor substrate underlying the first trench are etched to form a second trench having a second depth greater than the first depth, wherein the second trench has a sidewall and a bottom. A gate insulating layer is formed on the sidewall and the bottom of the second trench. A trench gate is formed in the second trench.
摘要:
A memory structure disclosed in the present invention features a control gate and floating gates being positioned in recessed trenches. A method of fabricating the memory structure includes the steps of first providing a substrate having a first recessed trench. Then, a first gate dielectric layer is formed on the first recessed trench. A first conductive layer is formed on the first gate dielectric layer. After that, the first conductive layer is etched to form a spacer which functions as a floating gate on a sidewall of the first recessed trench. A second recessed trench is formed in a bottom of the first recessed trench. An inter-gate dielectric layer is formed on a surface of the spacer, a sidewall and a bottom of the second recessed trench. A second conductive layer formed to fill up the first and the second recessed trench.
摘要:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
摘要:
A method for forming a semiconductor device. A substrate is provided, wherein the substrate has recessed gates and deep trench capacitor devices therein. Protrusions of the recessed gates and upper portions of the deep trench capacitor devices are revealed. Spacers are formed on sidewalls of the upper portions and the protrusions. Buried portions of conductive material are formed in spaces between the spacers. The substrate, the spacers and the buried portions to form parallel shallow trenches are patterned to form parallel shallow trenches for defining active regions. A layer of dielectric material is formed in the shallow trenches, wherein some of the buried portions serve as buried contacts.
摘要:
A method of fabricating a horizontal isolation structure between a deep trench capacitor and a vertical transistor thereon is provided. A deep trench capacitor is in the bottom of a deep trench of a substrate. An insulating layer is formed to partially fill the deep trench and also on the substrate by high-density plasma chemical vapor deposition. The insulating layer on the sidewall of the deep trench and on the substrate is removed to transform the insulating layer in the deep trench to an isolation structure. An alternative approach is to form an insulating layer on the substrate and in the deep trench. Then a CMP is performed to remove the insulating layer on the substrate and an etching back is performed to remove the upper portion of the insulating layer in the deep trench. Then the remained insulating layer in the deep trench is served as an isolation structure between the deep trench capacitor and a vertical transistor thereron. The upper portion of the insulating layer in the alternative approach is also can be replaced by a low-cost sacrificial layer.
摘要:
An energy relieving, redundant crack stop and the method of producing the same is disclosed. The redundant pattern allows the crack propagating energy that is not absorbed by the first ring of metallization to be absorbed by a second area of metallization and also provides a greater surface area over which the crack producing energy may be spread. The redundant crack stop is produced during the metallization process along with the rest of the wiring of the chip surface and, therefore, no additional production steps are necessary to form the structure.
摘要:
A method of fabricating a semiconductor device having a trench gate is provided. First, a semiconductor substrate having a trench etch mask thereon is provided. The semiconductor substrate is etched to form a trench having a sidewall and a bottom using the trench etch mask as a shield. Impurities are doped into the semiconductor substrate through the trench to form a doped region. The semiconductor substrate underlying the trench is etched to form an extended portion. A gate insulating layer is formed on the trench and the extended portion. A trench gate is formed in the trench and the extended portion.