Abstract:
A method for reducing offset voltage in an operational amplifier without the need for switched-capacitors, includes introducing a tapped resistor chain between the common connected terminals of the transistors of the input differential pair of the operational amplifier and connecting the tail current source/sink of the differential amplifier to a selected tap of the resistor chain. The invention further provides an improved operational amplifier in accordance with the above method.
Abstract:
A method and an improved apparatus for clock recovery from data streams containing embedded reference clock values controlled clock source means includes of a controllable digital fractional divider means receiving a control value from digital comparator means and a clock input from a digital clock synthesizer means driven by a fixed oscillator means.
Abstract:
An improved fractional divider that comprises an integer value storage means containing the integer part of the division value nullKnull connected to the input of a programmable counter means that is configured for a count value of nullKnull or nullKnull1null depending upon the state of a count control signal and generates the output signal as well a terminal count signal which is connected to an enable input of a fractional accumulator means that produces the count control signal on an addition overflow and has a first input connected to its result output and a second input connected to the output of a fractional value storage means, containing the fractional part of the divider value.
Abstract:
A static random access memory (SRAM) device includes a memory array of a plurality of memory cells, a controller that receives an external clock signal formed by a succession of external pulses and generates an internal clock signal formed by a succession of internal pulses, and a driving circuit that receives the internal clock signal. The controller is operable in a first mode, wherein the controller generates, for each external pulse, a corresponding internal pulse and the controller controls the driving circuit so that the driving circuitry carries out one access to the memory array for each internal pulse. The controller is further operable in a second mode, wherein the controller generates, for each external pulse, a pair of internal pulses, and the controller controls the driving circuitry so that, for each pair of internal pulses, the driving circuitry writes a first data item in a set of memory cells, and then reads the set of memory cells, so as to acquire a second data item.
Abstract:
A Voltage regulator includes a first input terminal configured to receive an input supply voltage, includes a second input terminal configured to receive a regulated output supply voltage as a function of the input supply voltage or to receive a test supply voltage and comprises a power transistor including an input terminal configured to receive the input supply voltage and including an output terminal configured to generate the regulated output supply voltage. The Voltage regulator is configured, during a start-up phase of a test operation mode, to receive a control signal equal to the input supply voltage, is configured to receive the input supply voltage having a substantially increasing trend, detect that the input supply voltage is equal to a first voltage threshold and generate, as a function of the detected signal and of the control signal, a by-pass signal having a transition from a first logic value to a second logic value for indicating a by-pass status of the Voltage regulator, and is configured to receive the by-pass signal having the second logic value and open the power transistor. The second input terminal is configured, during the test operation mode, to receive the test supply voltage having a test value different from a nominal value of the regulated output supply voltage.
Abstract:
A video window detector includes a region characteristic determiner to generate at least one characteristic value for at least one region of a display output; a characteristic map generator to generate an image map from the at least one characteristic value for at least one region of the display output; and a window detector to detect at least one video window dependent on the image map.
Abstract:
An embodiment of a non-volatile memory device includes: a memory array, having a plurality of non-volatile logic memory cells arranged in at least one logic row, the logic row including a first row and a second row sharing a common control line; and a plurality of bit lines. Each logic memory cell has a direct memory cell, for storing a logic value, and a complementary memory cell, for storing a second logic value, which is complementary to the first logic value in the corresponding direct memory cell. The direct memory cell and the complementary memory cell of each logic memory cell are coupled to respective separate bit lines and are placed one in the first row and the other in the second row of the respective logic row.
Abstract:
An integrated Low Dropout (LDO) linear voltage regulator provides improved current limiting. A differential voltage amplifier compares an output voltage to reference voltage and controls a pass transistor to make the output voltage substantially match the reference voltage. This is accomplished by sensing the output voltage of the voltage regulator for application to a first input of the differential amplifier and coupling a second input of the differential amplifier to the reference voltage. A current sense transistor utilizes current mirroring techniques to sense the current passing through the pass transistor to the output. This sensed current is compared to a reference current. The result of that comparison is fed back to the differential voltage amplifier to in a manner that increases the apparently sensed output voltage in situations where the sensed current exceeds the reference current.
Abstract:
A differential input receiver with hysteresis on both sides of the reference voltage may include a two-input, one-output differential amplifier including two input transistors having a common terminal connected together. The control terminal of each transistor may be connected to one of the inputs of the differential amplifier. The output of the differential amplifier may be connected to a set of cascaded digital inverters/buffers, and an output of each digital buffer may be connected to the control terminal of a feedback transistor. The feedback transistor may be connected in parallel across each of the input transistors so that when one input voltage increases above or decreases below the input voltage at the second input by a predetermined threshold value, the feedback transistors operate to provide positive feedback to facilitate a rapid switching action at the output.
Abstract:
An improved binary decoder incorporating a selection circuit that activates a selected output corresponding to a input binary value, and a deselecting circuit coupled to each output that deactivates all other outputs when the selected output is activated. The deselecting circuit arrangement has a single input connected to the selected output and a plurality of outputs each of which is connected to one of the remaining outputs and forces them to the inactive state whenever the selected output is activated.