Abstract:
A fiber laser device includes a laser pump for irradiating a laser beam, an optical component, an optical fiber and an optical sensor. The optical component has a first and a second output end, wherein a portion of the laser beam is output from the first output end and another portion of the laser beam is output from the second output end. The optical fiber including a core and a cladding layer is optically coupled between the laser pump and the optical component. A inclined angle θ of the first output end satisfies the following relations that θNA/2≦θ≦θNA, and θNA=sin−1(NA·ncladding/ncore), where NA is numerical aperture of optical fiber, ncore is refractive index of the core, and ncladding is refractive index of the cladding layer. The optical sensor is disposed at a light-transmission path of the laser beam reflected by the first output end.
Abstract:
A method of fabricating a three-dimensional integrated circuit comprises attaching a wafer to a carrier, mounting a plurality of semiconductor dies on top of the wafer to form a wafer stack. The method further comprises forming a molding compound layer on top of the wafer, attaching the wafer stack to a tape frame and dicing the wafer stack to separate the wafer stack into a plurality of individual packages.
Abstract:
The invention provides a micro-electro-mechanical system pressure sensor. The micro-electro-mechanical system pressure sensor includes: a substrate, including at least one conductive wiring; a membrane disposed above the substrate to form a semi-open chamber between the membrane and the substrate, the semi-open chamber having an opening to receive an external pressure; and a cap, disposed above the membrane and forming an enclosed space with the membrane, the cap including a top electrode corresponding to the membrane and at least one portion of the membrane forming a bottom electrode, wherein the top and bottom electrodes form a sensing capacitor to sense the external pressure.
Abstract:
The disclosure relates to a micro-electromechanical system (MEMS) device having an electrical insulating structure. The MEMS device includes at least one moving part, at least one anchor, at least one spring and an insulating layer. The spring is connected to the anchor and to the moving part. The insulating layer is disposed in the moving part and the anchor. Each of the moving part and the anchor is divided into two conductive portions by the insulating layer. Whereby, the electrical signals of different moving parts are transmitted through the insulated electrical paths which are not electrically connected.
Abstract:
A reading circuit of a gyroscope is provided. The reading circuit includes a driving unit, a high pass filter, a signal processing unit, and a low pass filter. The driving unit generates a resonance signal for a resonator of the gyroscope and generates a demodulation signal for the signal processing unit. The signal processing unit provides a modulation signal to a Coriolis accelerometer of the gyroscope. An input terminal of the high pass filter receives an output signal of the Coriolis accelerometer. The signal processing unit processes and demodulates an output of the high pass filter according to the demodulation signal and outputs a demodulation result to the low pass filter.
Abstract:
A package component includes a substrate, wherein the substrate has a front surface and a back surface over the front surface. A through-via penetrates through the substrate. A conductive feature is disposed over the back surface of the substrate and electrically coupled to the through-via. A first dielectric pattern forms a ring covering edge portions of the conductive feature. An Under-Bump-Metallurgy (UBM) is disposed over and in contact with a center portion of the conductive feature. A polymer contacts a sidewall of the substrate. A second dielectric pattern is disposed over and aligned to the polymer. The first and the second dielectric patterns are formed of a same dielectric material, and are disposed at substantially a same level.
Abstract:
A method of fabricating a three-dimensional integrated circuit comprises attaching a wafer to a carrier, mounting a plurality of semiconductor dies on top of the wafer to form a wafer stack. The method further comprises forming a molding compound layer on top of the wafer, attaching the wafer stack to a tape frame and dicing the wafer stack to separate the wafer stack into a plurality of individual packages.
Abstract:
The disclosure relates to a micro-electromechanical system (MEMS) device having an electrical insulating structure. The MEMS device includes at least one moving part, at least one anchor, at least one spring and an insulating layer. The spring is connected to the anchor and to the moving part. The insulating layer is disposed in the moving part and the anchor. Each of the moving part and the anchor is divided into two conductive portions by the insulating layer. Whereby, the electrical signals of different moving parts are transmitted through the insulated electrical paths which are not electrically connected.
Abstract:
An all-fiber Q-switched laser including a laser resonant cavity and a loop optical system is provided. The loop optical system is disposed inside the laser resonant cavity, and the all-fiber Q-switched laser generates a pulsed laser through the loop optical system. The loop optical system includes a plurality of wavelength-division elements and a saturable absorber. One of the wavelength-division elements is coupled with another one of the wavelength-division elements through corresponding first connecting fibers. Two ends of the saturable absorber are respectively coupled to second connecting fibers of the wavelength-division elements, wherein the saturable absorber and the two wavelength-division elements form a loop such that an auxiliary unsaturated light source can be transmitted in the loop.
Abstract:
A laser apparatus with all optical-fiber includes a plurality of pumping light sources in different wave bands and an optical-fiber laser system. The optical-fiber laser system includes an optical fiber at least doped with erbium (Er) element and doped with or not doped with ytterbium (Yb) element according to a need. The optical-fiber laser system outputs a laser light through the pumping light source.