摘要:
A method of fabricating a three-dimensional integrated circuit comprises attaching a wafer to a carrier, mounting a plurality of semiconductor dies on top of the wafer to form a wafer stack. The method further comprises forming a molding compound layer on top of the wafer, attaching the wafer stack to a tape frame and dicing the wafer stack to separate the wafer stack into a plurality of individual packages.
摘要:
A method of fabricating a three-dimensional integrated circuit comprises attaching a wafer to a carrier, mounting a plurality of semiconductor dies on top of the wafer to form a wafer stack. The method further comprises forming a molding compound layer on top of the wafer, attaching the wafer stack to a tape frame and dicing the wafer stack to separate the wafer stack into a plurality of individual packages.
摘要:
A package component includes a substrate, wherein the substrate has a front surface and a back surface over the front surface. A through-via penetrates through the substrate. A conductive feature is disposed over the back surface of the substrate and electrically coupled to the through-via. A first dielectric pattern forms a ring covering edge portions of the conductive feature. An Under-Bump-Metallurgy (UBM) is disposed over and in contact with a center portion of the conductive feature. A polymer contacts a sidewall of the substrate. A second dielectric pattern is disposed over and aligned to the polymer. The first and the second dielectric patterns are formed of a same dielectric material, and are disposed at substantially a same level.
摘要:
A package component includes a substrate, wherein the substrate has a front surface and a back surface over the front surface. A through-via penetrates through the substrate. A conductive feature is disposed over the back surface of the substrate and electrically coupled to the through-via. A first dielectric pattern forms a ring covering edge portions of the conductive feature. An Under-Bump-Metallurgy (UBM) is disposed over and in contact with a center portion of the conductive feature. A polymer contacts a sidewall of the substrate. A second dielectric pattern is disposed over and aligned to the polymer. The first and the second dielectric patterns are formed of a same dielectric material, and are disposed at substantially a same level.
摘要:
An ultrafast laser generating system comprises a laser signal generator, a laser signal amplifier and a beam splitting element. The laser signal generator is configured to generate a first nanosecond pulse laser. The laser amplifier is configured to amplify the first nanosecond pulse laser from the laser signal generator so as to generate a second nanosecond pulse laser, which includes a picosecond pulse laser. The beam splitting element is configured to receive the second nanosecond pulse laser and split the picosecond pulse laser from the second nanosecond pulse laser.
摘要:
A polarization modulation device for wideband laser comprises a first polarization maintaining optical fiber, a second polarization maintaining optical fiber, and a non-polarization maintaining optical fiber. The non-polarization maintaining optical fiber includes a first polarization controller coupled with the first polarization maintaining optical fiber, and a second polarization controller coupled with the second polarization maintaining optical fiber.
摘要:
The disclosure relates to a micro-electromechanical system (MEMS) device having an electrical insulating structure. The MEMS device includes at least one moving part, at least one anchor, at least one spring and an insulating layer. The spring is connected to the anchor and to the moving part. The insulating layer is disposed in the moving part and the anchor. Each of the moving part and the anchor is divided into two conductive portions by the insulating layer. Whereby, the electrical signals of different moving parts are transmitted through the insulated electrical paths which are not electrically connected.
摘要:
The disclosure relates to a micro-electromechanical system (MEMS) device having an electrical insulating structure. The MEMS device includes at least one moving part, at least one anchor, at least one spring and an insulating layer. The spring is connected to the anchor and to the moving part. The insulating layer is disposed in the moving part and the anchor. Each of the moving part and the anchor is divided into two conductive portions by the insulating layer. Whereby, the electrical signals of different moving parts are transmitted through the insulated electrical paths which are not electrically connected.
摘要:
One embodiment discloses an apparatus integrating a microelectromechanical system device with a circuit chip which includes a circuit chip, a microelectromechanical system device, a sealing ring, and a lid. The circuit chip comprises a substrate and a plurality of metal bonding areas. The substrate has an active surface with electrical circuit area, and the metal bonding areas are disposed on the active surface and electrically connected to the electrical circuits. The microelectromechanical system device comprises a plurality of bases and at least one sensing element. The bases are connected to at least one of the metal bonding areas. The at least one sensing element is elastically connected to the bases. The sealing ring surrounds the bases, and is connected to at least one of the metal bonding areas. The lid is opposite to the active surface of the circuit chip, and is connected to the sealing ring to have a hermetic chamber which seals the sensing element and the active surface of the circuit chip.
摘要:
One embodiment discloses an apparatus integrating a microelectromechanical system device with a circuit chip which comprises a circuit chip, a microelectromechanical system device, a sealing ring, and a lid. The circuit chip comprises a substrate and a plurality of metal bonding areas. The substrate has an active surface with electrical circuit area, and the metal bonding areas are disposed on the active surface and electrically connected to the electrical circuits. The microelectromechanical system device comprises a plurality of bases and at least one sensing element. The bases are connected to at least one of the metal bonding areas. The at least one sensing element is elastically connected to the bases. The sealing ring surrounds the bases, and is connected to at least one of the metal bonding areas. The lid is opposite to the active surface of the circuit chip, and is connected to the sealing ring to have a hermetic chamber which seals the sensing element and the active surface of the circuit chip.