Abstract:
There is provided a method of delivering a benefit agent whereby a benefit agent is first loaded to a surface and subsequently unloaded and transferred and delivered to a second surface. More in particular, the benefit agent is first loaded onto a garment during a laundering process, and subsequently delivered to another surface. The benefit agents can be fragrance agents, perfumes, colour enhancers, fabric softening agents, polymeric lubricants, photoprotective agents, latexes, resins, dye fixative agents, encapsulated materials, antioxidants, insecticides, soil repelling agents, soil release agents, and cellulose fibers.
Abstract:
An assay method and device can perform at least one (e.g., at least two) assays on a single aliquot of a sample liquid. The device can mix a sample liquid with assay reagents including magnetically susceptible particles. The device is configured to create a sample liquid-air interface with the sample liquid. The magnetically susceptible particles can be located (via an applied magnetic field) at the liquid-air interface when a second liquid contacts the interface to form a liquid-liquid interface. The magnetic particles travel across the liquid:liquid interface to the second liquid. The magnetically susceptible particles are configured to transport an analyte across the interface into the second liquid. An assay for the analyte is performed in the second liquid. An assay for another analyte can also be performed in the sample liquid.
Abstract:
Patients can be segregated into groups expected to have differential responses to drug treatment based on test results. Patient sub-populations expected to benefit from a particular treatment can thus be identified and directed to that treatment. Similarly, sub-populations expected to suffer a greater risk of side effects from a particular treatment can be identified and steered to other, safer treatments. A patient under treatment can be monitored for safety.
Abstract:
A portable phone includes a handset and a data projection system configured to form a visual image of data, such as caller waiting ID data, on a viewing surface viewable by a user during a two way conversation. The handset also includes a speaker, a microphone, conventional phone circuitry and a keyboard. The data projection system is configured to receive signals from the phone circuitry, to generate a pattern representative of the data, to process the pattern into a mirror image of the visual image, and to project the mirror image from a bottom end surface of the handset. The projection system includes an electro optic system for generating the pattern, and an optics system for projecting the mirror image onto the viewing surface.A method for projecting data in a portable phone includes the steps of: providing the handset with the data projection system, conducting a two way conversation with the handset held against the head of the user, and forming the visual image on the viewing surface during the two way conversation with the handset held against the head. The method can also include the steps of manipulating the handset and a body part to locate and focus the visual image, sensing an orientation of the handset during the two way conversation, and orienting the visual image as a function of the sensing step.
Abstract:
The immobilization of proteins at solid surfaces facilitated by incorporation of a polypeptide segment which is capable of adopting a folded structure is described. Materials comprising proteins so immobilized and uses thereof are also described.
Abstract:
A device for receiving a sample of liquid, such as a sample of bodily liquid which is to be subjected to further analysis, may include a body having at least a major surface and a minor surface. A sample-receiving chamber may be located in the body and may have an inlet end which opens into the major and minor surfaces of the body. A conduit may be located in the body, extending from the outlet end of the chamber, and may be arranged so as to allow the liquid to pass from the outlet end into the conduit by capillary action.
Abstract:
A microfluidic device is made up from at least four laminae, the laminae including two outer laminae and at least two further laminae disposed between the outer laminae and defining a microfluidic pathway. Inner surfaces of the outer laminae define the upper and lower surfaces of a fluid pathway, one of said further laminae defining at least a first fluidic element, and at least a second of said further laminae defining at least a second fluidic element, wherein the first and second fluidic elements are fluidically coupled.
Abstract:
A memory device includes isolation devices located between memory cells. A plurality of isolation lines connects the isolation devices to a positive voltage during normal operations but still keeps the isolation devices in the off state to provide isolation between the memory cells. A current control circuit is placed between the isolation lines and a power node for reducing a current flowing between the isolation lines and the power node in case a deflect occurs at any one of isolation devices.
Abstract:
A portable electric right-angle plunge router (10) is disclosed which has a pair of laterally spaced apart bases (13, 14), two pair of laterally spaced apart columns (12) and a motor housing assembly (11). The bases (13, 14) have planar work engaging surfaces (15). Affixed to the bases (13, 14) are the laterally spaced apart columns (12) which extend perpendicularly to the work engaging surfaces (15). The motor housing assembly (11) has a central axis which is parallel to the work surface and is mounted on the laterally spaced apart columns (12) to allow the housing assembly to move vertically toward and away from the bases. Laterally space apart column guides (17) affixed to the housing (11) are aligned and sized to slidingly engage the columns (12). A handle is formed in the housing (11) between the front and rear column guides (17). A drive motor affixed in the housing has an armature shaft which is rotatable about an axis being substantially the horizontal axis of the housing (11). An arbor (25) is affixed in the housing and oriented substantially perpendicular to the horizontal axis of the housing (11). A tool chuck (24) affixed to the arbor (25) receives a cutting tool (20). The arbor (25) and armature shaft are interconnected by meshed gears thereby providing for right-angular transmission of power to the cutting tool (20). A depth-of-cut gauge (35) and lock-down mechanism (37, 39) are provided.