Abstract:
A semiconductor light emitting device may include: a light emitting structure including an n-type semiconductor layer, a p-type semiconductor layer, and an active layer interposed therebetween; a first electrode connected to one of the n-type semiconductor layer and the p-type semiconductor layer; and a second electrode connected to the other of the n-type semiconductor layer and the p-type semiconductor layer. The first electrode may include a first electrode pad disposed in a central portion of one side of the light emitting structure and first to third branch electrodes connected to the first electrode pad, having a fork shape. The second electrode may include second and third electrode pads disposed separately in both corners of the other side opposing the one side and fourth to seventh branch electrodes connected thereto. The fourth and seventh branch electrodes may extend in an interdigitated manner between the first to third branch electrodes.
Abstract:
A semiconductor light emitting device includes: a light emitting diode unit including a light-transmissive substrate having a face sloped upwardly at a lower edge thereof. A rear reflective lamination body is formed on the lower face and the surrounding sloped face of the light-transmissive substrate. The rear reflective lamination body includes an optical auxiliary layer and a metal reflective film formed on a lower face of the optical auxiliary layer. A junction lamination body is provided to a lower face of the rear reflective lamination body. The junction lamination body including a junction metal layer made of a eutectic metal material and a diffusion barrier film.
Abstract:
Provided is a vertical LED including an n-electrode; an n-type GaN layer formed under the n-electrode, the n-type GaN layer having a surface coming in contact with the n-electrode, the surface having a Ga+N layer containing a larger amount of Ga than that of N; an active layer formed under the n-type GaN layer; a p-type GaN layer formed under the active layer; a p-electrode formed under the p-type GaN layer; and a structure support layer formed under the p-electrode.
Abstract:
A vertical nitride-based semiconductor LED comprises a structure support layer; a p-electrode formed on the structure support layer; a p-type nitride semiconductor layer formed on the p-electrode; an active layer formed on the p-type nitride semiconductor layer; an n-type nitride semiconductor layer formed on the active layer; an n-electrode formed on a portion of the n-type nitride semiconductor layer; and a buffer layer formed on a region of the n-type nitride semiconductor layer on which the n-electrode is not formed, the buffer layer having irregularities formed thereon. The surface of the n-type nitride semiconductor layer coming in contact with the n-electrode is flat.
Abstract:
There are provided a method of manufacturing a nitride semiconductor light emitting device and the nitride semiconductor light emitting device manufactured by the method, the method including: forming a light emitting structure by sequentially growing a first conductivity nitride layer, an active layer and a second conductivity type nitride layer on a preliminary substrate for nitride single crystal growth; separating the light emitting structure in accordance with a size of final light emitting device; forming a conductive substrate on the light emitting structure; polishing a bottom surface of the preliminary substrate to reduce a thickness of the preliminary substrate; forming uneven surface structures by machining the preliminary substrate; selectively removing the preliminary substrate to expose portions of the first conductivity type nitride layer; and forming electrodes on the portions of the first conductivity type nitride layer exposed by selectively removing the preliminary substrate.
Abstract:
A vertical nitride-based semiconductor LED comprises a structure support layer; a p-electrode formed on the structure support layer; a p-type nitride semiconductor layer formed on the p-electrode; an active layer formed on the p-type nitride semiconductor layer; an n-type nitride semiconductor layer formed on the active layer; an n-electrode formed on a portion of the n-type nitride semiconductor layer; and a buffer layer formed on a region of the n-type nitride semiconductor layer on which the n-electrode is not formed, the buffer layer having irregularities formed thereon. The surface of the n-type nitride semiconductor layer coming in contact with the n-electrode is flat.
Abstract:
A vertical GaN-based LED and a method of manufacturing the same are provided. The vertical GaN-based LED can prevent the damage of an n-type GaN layer contacting an n-type electrode, thereby stably securing the contact resistance of the n-electrode. The vertical GaN-based LED includes: a support layer; a p-electrode formed on the support layer; a p-type GaN layer formed on the p-electrode; an active layer formed on the p-type GaN layer; an n-type GaN layer for an n-type electrode contact, formed on the active layer; an etch stop layer formed on the n-type GaN layer to expose a portion of the n-type GaN layer; and an n-electrode formed on the n-type GaN layer exposed by the etch stop layer.
Abstract:
There is provided a semiconductor light emitting device having excellent light extraction efficiency to efficiently reflect light moving into the device by increasing the total reflectivity of a reflective layer. A semiconductor light emitting device according to an aspect of the invention includes: a substrate, a reflective electrode, a first conductivity semiconductor layer, an active layer, and a second conductivity type semiconductor layer that are sequentially stacked. Here, the reflective electrode includes; a first reflective layer provided on the substrate and including a conductive reflective material reflecting light generated from the active layer; and a second reflective layer provided on the first reflective layer, including one or more dielectric portions reflecting light generated from the active layer, and one or more contact holes filled with a conductive filler to electrically connect the first conductivity type semiconductor layer and the first reflective layer, and having a greater thickness than a wavelength of the generated light.
Abstract:
Provided are a vertical GaN-based LED and a method of manufacturing the same. The vertical GaN-based LED includes an n-electrode. An AlGaN layer is formed under the n-electrode. An undoped GaN layer is formed under the AlGaN layer to provide a two-dimensional electron gas layer to a junction interface of the AlGaN layer. A GaN-based LED structure includes an n-type GaN layer, an active layer, and a p-type GaN layer that are sequentially formed under the undoped GaN layer. A p-electrode is formed under the GaN-based LED structure. A conductive substrate is formed under the p-electrode.
Abstract:
Provided are a vertical GaN-based LED and a method of manufacturing the same. The vertical GaN-based LED includes an n-electrode. An AlGaN layer is formed under the n-electrode. An undoped GaN layer is formed under the AlGaN layer to provide a two-dimensional electron gas layer to a junction interface of the AlGaN layer. A GaN-based LED structure includes an n-type GaN layer, an active layer, and a p-type GaN layer that are sequentially formed under the undoped GaN layer. A p-electrode is formed under the GaN-based LED structure. A conductive substrate is formed under the p-electrode.