摘要:
Positional relationships are established in a process chamber. An upper electrode is configured with a first surface to support a wafer, and an electrode has a second surface. A linear drive is mounted on the base and a linkage connected between the drive and the upper electrode. Linkage adjustment defines a desired orientation between the surfaces. The linear drive and linkage maintain the desired orientation while the assembly moves the upper electrode with the surfaces moving relative to each other. An annular etching region defined between the electrodes enables etching of a wafer edge exclusion region extending along a top and bottom of the wafer. Removable etch defining rings are configured to define unique lengths along each of the top and bottom of the wafer to be etched. Positional relationships of the surfaces enable limiting the etching to those unique lengths of the exclusion region.
摘要:
Apparatus for plasma etching a layer of material upon a substrate comprising an anode having a first region protruding from a second region, wherein the second region defines a plane and the first region extends from said plane. In one embodiment, at least one solenoid is disposed near the apparatus to magnetize the plasma.
摘要:
Improved mechanisms of removal of etch byproducts, dielectric films and metal films near the substrate bevel edge, and etch byproducts on substrate backside and chamber interior is provided to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. An exemplary plasma etch processing chamber configured to clean a bevel edge of a substrate is provided. The chamber includes a bottom edge electrode surrounding a substrate support in the plasma processing chamber, wherein the substrate support is configured to receive the substrate and the bottom edge electrode and the substrate support are electrically isolated from each other by a bottom dielectric ring. The chamber also includes a top edge electrode surrounding a gas distribution plate opposing the substrate support, wherein the top edge electrode and the gas distribution plate are electrically isolated from each other by a top dielectric ring, and the top edge electrode and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate.
摘要:
A plasma processing system including a plasma chamber for processing a substrate is disclosed. The apparatus includes a chuck configured for supporting a first surface of the substrate. The apparatus also includes a plasma resistant barrier disposed in a spaced-apart relationship with respect to a second surface of the substrate, the second surface being opposite the first surface, the plasma resistant barrier substantially shielding a center portion of the substrate and leaving an annular periphery area of the second surface of the substrate substantially unshielded by the plasma resistant barrier. The apparatus further includes at least one powered electrode, the powered electrode operating cooperatively with the plasma resistant barrier to generate confined plasma from a plasma gas, the confined plasma being substantially confined to the annular periphery portion of the substrate and away from the center portion of the substrate.
摘要:
An apparatus for cleaning a substrate in a reactive ion etch process is disclosed. The apparatus is configured to produce an atmospheric plasma using a RF generation device. The apparatus includes a plasma forming chamber including a cavity defined by a set of interior chamber walls comprised of a dielectric material. The apparatus also includes an atmospheric plasma generated by the RF generation device, the atmospheric plasma protruding from a first end of the cavity to clean the substrate.
摘要:
The present invention includes a process for selectively etching a low-k dielectric material formed on a substrate using a plasma of a gas mixture in a plasma etch chamber. The gas mixture comprises a fluorine-rich fluorocarbon or hydrofluorocarbon gas, a nitrogen-containing gas, and one or more additive gases, such as a hydrogen-rich hydrofluorocarbon gas, an inert gas and/or a carbon-oxygen gas. The process provides a low-k dielectric to a photoresist mask etching selectivity ratio greater than about 5:1, a low-k dielectric to a barrier/liner layer etching selectivity ratio greater about 10:1, and a low-k dielectric etch rate higher than about 4000 Å/min.
摘要:
A device for cleaning a bevel edge of a semiconductor substrate. The device includes: a lower support having a cylindrical top portion; a lower plasma-exclusion-zone (PEZ) ring surrounding the outer edge of the top portion and adapted to support the substrate; an upper dielectric component opposing the lower support and having a cylindrical bottom portion; an upper PEZ ring surrounding the outer edge of the bottom portion and opposing the lower PEZ ring; and at least one radiofrequency (RF) power source operative to energize process gas into plasma in an annular space defined by the upper and lower PEZ rings, wherein the annular space encloses the bevel edge.
摘要:
A method for detecting plasma unconfinement in a reaction chamber during a bevel edge cleaning operation is provided. The method initiates with selecting a wavelength associated with expected by products of a bevel edge clean process. The method includes cleaning the bevel edge area of a substrate and monitoring the intensity of the selected wavelengths during the cleaning for deviation from a threshold wavelength intensity. The cleaning is terminated if the deviation from the threshold wavelength intensity exceeds a target deviation.
摘要:
Methods and apparatus for more efficiently cleaning a substrate having a notch in a plasma processing chamber configured for bevel edge cleaning. A notched plasma exclusion ring an inner periphery and an outer periphery is provided. The notched plasma exclusion ring has a ring notch formed at its outer periphery. The notched plasma exclusion ring has a notch apex dimension that is at least as large as a notch apex dimension of the substrate notch and a notch opening dimension that is at least as large as a notch opening dimension of the substrate notch. Methods for obtaining misalignment data and for subsequently rotate substrates to more efficiently clean the substrate notch are also disclosed.
摘要:
The various embodiments described in the specification provide improved mechanisms of removal of unwanted deposits on the bevel edge to improve process yield. The embodiments provide apparatus and methods of treating the bevel edge of a copper plated substrate to convert the copper at the bevel edge to a copper compound that can be wet etched with a fluid at a high etch selectivity in comparison to copper. In one embodiment, the wet etch of the copper compound at high selectivity to copper allows the removal of the non-volatile copper at substrate bevel edge in a wet etch processing chamber. The plasma treatment at bevel edge allows the copper at bevel edge to be removed at precise spatial control to about 2 mm or below, such as about 1 mm, about 0.5 mm or about 0.25 mm, to the very edge of substrate. In addition, the apparatus and methods described above for bevel edge copper removal do not have the problems of copper etching fluid being splashed on the device regions to cause defects and thinning of copper films. Therefore, device yield can be greatly improved.