Abstract:
A method of preparing zirconia-containing nanoparticles and a method of preparing a composite material that includes the zirconia-containing nanoparticles are provided. A method of treating a zirconium carboxylate salt solution to remove alkali metal ions and alkaline earth ions is provided. The treated solution can be used as a feedstock to prepare the zirconia-containing nanoparticles. Additionally, a continuous hydrothermal reactor system is provided that can be used, for example, to prepare the zirconia-containing nanoparticles.
Abstract:
Microstructured films such as brightness enhancing films. The microstructured film has a polymerized structure comprising the reaction product of the polymerizable resin composition (e.g. having a refractive index of at least 1.58). The cured nanocomposite (e.g. structure) can exhibit improved crack resistance. In some embodiments, the flexibility is expressed in terms of a cylindrical mandrel bend test property (e.g. a mandrel size to failure of less than 6 mm or a mandrel size to failure according to the equation D=1000(T/0.025−T) wherein T is the thickness in millimeters of a (e.g. preformed base layer). In other embodiments, the flexibility is expressed in terms of a tensile and elongation property (e.g. a tensile strength at break of at least 25 MPa and an elongation at break of at least 1.75%).
Abstract:
Foam compositions are provided including a polylactic acid polymer; second (e.g., polyvinyl acetate) polymer having a glass transition temperature (Tg) of at least 25° C.; and plasticizer. Also described are articles comprising the foam compositions, such as a sheet or hearing protection article. Methods of making and using the foam compositions are further described herein.
Abstract:
The present disclosure generally relates to patterned gradient polymer films and methods for making the same, and more particularly to patterned gradient optical films that have regions that include variations in optical properties such as refractive index, haze, transmission, clarity, or a combination thereof. The variation in optical properties can occur across a transverse plane of the film as well as through a thickness direction of the film.
Abstract:
A semiconductor package resin composition of the present invention includes an epoxy resin, a curing agent, inorganic particles, nano-particles surface treated with a silane that contains a photopolymerizable functional group, and a photopolymerization initiator.
Abstract:
Metal oxide particles, such as molded particles, as well as methods of making and articles containing the same. The particles can contain at least 70 mol percent ZrO2, and can be made by a molding process.
Abstract:
Retroreflecting optical constructions are disclosed. A disclosed retroreflecting optical construction includes a retroreflecting layer that has a retroreflecting structured major surface, and an optical film that is disposed on the retroreflecting structured major surface of the retroreflecting layer. The optical film has an optical haze that is not less than about 30%. Substantial portions of each two neighboring major surfaces in the retroreflecting optical construction are in physical contact with each other.
Abstract:
A method of preparing zirconia-containing nanoparticles and a method of preparing a composite material that includes the zirconia-containing nanoparticles are provided. A method of treating a zirconium carboxylate salt solution to remove alkali metal ions and alkaline earth ions is provided. The treated solution can be used as a feedstock to prepare the zirconia-containing nanoparticles. Additionally, a continuous hydrothermal reactor system is provided that can be used, for example, to prepare the zirconia-containing nanoparticles.
Abstract:
Sintered bodies containing zirconia-based ceramic materials and partially sintered bodies that are intermediates in the preparation of the sintered bodies are described. The zirconia-based ceramic material is doped with lanthanum and yttrium. The grain size of the zirconia-based ceramic material can be controlled by the addition of lanthanum. The crystalline phase of the zirconia-based ceramic material can be influenced by the addition of yttrium.