摘要:
A radiation-emitting semiconductor chip is specified, comprising a semiconductor body (3) having an n-conducting region (4) and a p-conducting region (5), the semiconductor body having a hole barrier layer containing a material from the material system InyGa1-x-yAlxN.
摘要:
A lighting device with front carrier, rear carrier and plurality of light-emitting diode chips, which when in operation emits light and releases waste heat, wherein rear carrier is covered at least in selected locations by front carrier, light-emitting diode chips are arranged between rear carrier and front carrier to form array, light-emitting diodes are contacted electrically by rear and/or front carrier and immobilized mechanically by rear carrier and front carrier, front carrier is coupled thermally conductively to light-emitting diode chips and includes light outcoupling face remote from light-emitting diode chips, which light outcoupling face releases some of waste heat released by light-emitting diode chips into surrounding environment, each light-emitting diode chip is actuated with electrical nominal power of 100 mW or less when lighting device is in operation and has light yield of 100 lm/W or more.
摘要:
An optical projection apparatus includes a first light source, a second light source, and an imaging element, which is illuminated by the first light source and the second light source during operation. The light source includes a light-emitting diode chip that emits red light during operation. The second light source includes a first light-emitting diode chip, which emits green light during operation. A second light-emitting diode chip emits blue light during operation. The second light-emitting diode chip is arranged on the first light-emitting diode chip at a radiation exit surface of the first light-emitting diode chip. Electromagnetic radiation generated in the first light-emitting diode chip during operation passes through the second light-emitting diode chip.
摘要:
A semiconductor chip with a semiconductor body has a semiconductor layer sequence with an active region provided for generating radiation. A mirror structure that includes a mirror layer and a dielectric layer that is arranged at least in regions between the mirror layer and semiconductor body is arranged on the semiconductor body.
摘要:
A luminescence diode chip includes a semiconductor layer sequence having an active layer suitable for generating electromagnetic radiation, and a first electrical connection layer, which touches and makes electrically conductive contact with the semiconductor layer sequence. The first electrical connection layer touches and makes contact with the semiconductor layer sequence in particular with a plurality of contact areas. In the case of the luminescence diode chip, an inhomogeneous current density distribution or current distribution is set in a targeted manner in the semiconductor layer sequence by means of an inhomogeneous distribution of an area density of the contact areas along a main plane of extent of the semiconductor layer sequence.
摘要:
A description is given of an optoelectronic semiconductor chip (1) comprising a semiconductor layer sequence (2), which has an active zone (4) for generating electromagnetic radiation, and comprising a structured current spreading layer (6), which contains a transparent conductive oxide and is arranged on a main area (12) of the semiconductor layer sequence (2), wherein the current spreading layer (6) covers at least 30% and at most 60% of the main area (12).
摘要:
A semiconductor light-emitting diode (10) is proposed having at least one p-doped light-emitting diode layer (4), an n-doped light-emitting diode layer (2) and an optically active zone (3) between the p-doped light-emitting diode layer (4) and the n-doped light-emitting diode layer (2), having an oxide layer (8) consisting of a transparent conductive oxide, and having at least one mirror layer (9), wherein the oxide layer (8) is disposed between the light-emitting diode layers (2, 4) and the at least one mirror layer (9), and comprises a first boundary surface (8a) which faces the light-emitting diode layers (2, 4) and a second boundary surface (8b) which faces the at least one mirror layer (9), and wherein the second boundary surface (8b) of the oxide layer (8) has less roughness (R2) than the first boundary surface (8a) of the oxide layer (8).
摘要:
A radiation-emitting component (10) having a layer stack (1) which is based on a semiconductor material and which has an active layer sequence (4) for generating electromagnetic radiation, and a filter element (2) which is arranged after the active layer sequence (4) in the irradiation direction (A) and by means of which a first radiation component is transmitted, and a second radiation component is reflected into the layer stack (1), wherein the second radiation component is subjected to a deflection process or an absorption and emission process, and the deflected or emitted radiation impinges on the filter element (2).
摘要:
An optical projection apparatus includes a first light source, a second light source, and an imaging element, which is illuminated by the first light source and the second light source during operation. The light source includes a light-emitting diode chip that emits red light during operation. The second light source includes a first light-emitting diode chip, which emits green light during operation. A second light-emitting diode chip emits blue light during operation. The second light-emitting diode chip is arranged on the first light-emitting diode chip at a radiation exit surface of the first light-emitting diode chip. Electromagnetic radiation generated in the first light-emitting diode chip during operation passes through the second light-emitting diode chip.
摘要:
A luminescence diode chip includes a semiconductor layer sequence having an active layer suitable for generating electromagnetic radiation, and a first electrical connection layer, which touches and makes electrically conductive contact with the semiconductor layer sequence. The first electrical connection layer touches and makes contact with the semiconductor layer sequence in particular with a plurality of contact areas. In the case of the luminescence diode chip, an inhomogeneous current density distribution or current distribution is set in a targeted manner in the semiconductor layer sequence by means of an inhomogeneous distribution of an area density of the contact areas along a main plane of extent of the semiconductor layer sequence.