Abstract:
A thin film transistor, a method for manufacturing the same and a display device are disclosed. The thin film transistor includes source-drain electrodes and a passivation layer; an isolation layer is disposed between the source-drain electrodes and the passivation layer, and the isolation layer overlays the source-drain electrodes.
Abstract:
An array substrate includes a base substrate; a first thin film transistor on the base substrate and including a first active layer, a first gate electrode, a first source electrode and a first drain electrode; a second thin film transistor on the base substrate and including a second active layer, a second gate electrode, a second source electrode and a second drain electrode; a first gate insulating layer between the first active layer and the first gate electrode; and a second gate insulating layer between the second active layer and the second gate electrode, the second gate insulating layer being different from the first gate insulating layer. The first source electrode, the first drain electrode, and the second gate electrode are in a same layer. The first source electrode and the first drain electrode are on a side of the second gate insulating layer distal to the base substrate.
Abstract:
A thin film transistor, a manufacturing method for an array substrate, the array substrate, and a display device are provided. The manufacturing method for a thin film transistor includes: forming a semiconductor layer; performing a modification treatment on a surface layer of a region of the semiconductor layer, so that the region of the semiconductor layer has a portion in a first direction perpendicular to the semiconductor layer formed as an etching blocking layer, portions of the semiconductor layer on both sides of the etching blocking layer in a second direction parallel to a surface of the semiconductor layer remaining unmodified; and forming a source electrode and a drain electrode on the semiconductor layer, the source electrode and the drain electrode being formed on both sides of a center line of the region perpendicular to the second direction, and spaced from each other in the second direction.
Abstract:
The present application discloses a thin film transistor including a base substrate; an active layer on the base substrate having a channel region, a source electrode contact region, and a drain electrode contact region; an etch stop layer on a side of the channel region distal to the base substrate covering the channel region; a source electrode on a side of the source electrode contact region distal to the base substrate; and a drain electrode on a side of the drain electrode contact region distal to the base substrate. A thickness of the active layer in the source electrode contact region and the drain electrode contact region is substantially the same as a combined thickness of the active layer in the channel region and the etch stop layer.
Abstract:
Provided are oxide thin-film transistor and display device employing the same, and method for manufacturing an oxide thin-film transistor array substrate. A source electrode and a drain electrode are located below an oxide active layer pattern, and a gate electrode is located below the source electrode and the drain electrode, and the gate insulating layer is located between the gate electrode and the source electrode/the drain electrode.
Abstract:
The present application discloses a drive backplane and a preparation method thereof, a display panel, and a display device. The drive backplane includes a flexible substrate provided with a first via hole; a first passivation layer located on a side of the flexible substrate and provided with a second via hole, an orthographic projection of the second via hole being at least partially overlapped with an orthographic projection of the first via hole; a thin film transistor located on a side, facing away from the flexible substrate, of the first passivation layer; and an electrical connecting structure, including a signal trace and a connecting terminal.
Abstract:
A displaying base plate and a manufacturing method thereof, and a displaying device. The displaying base plate includes a substrate, and a first electrode layer disposed on one side of the substrate, wherein the first electrode layer includes a first electrode pattern; a first planarization layer disposed on one side of the first electrode layer that is away from the substrate, wherein the first planarization layer is provided with a through hole, and the through hole penetrates the first planarization layer, to expose the first electrode pattern; and a second electrode layer, a second planarization layer and a third electrode layer that are disposed in stack on one side of the first planarization layer that is away from the substrate, wherein the second electrode layer is disposed closer to the substrate, the second electrode layer is connected to the first electrode pattern and the third electrode layer.
Abstract:
An organic light emitting diode display device are provided. The organic light emitting diode display device includes: a substrate; a barrier layer, located on a side of the substrate; a first buffer layer, located on a side of the barrier layer; a first semiconductor layer, located on a side of the first buffer layer; a first gate insulating layer, located on a side of the first semiconductor layer; a first gate electrode, located on a side of the first gate insulating layer; a second buffer layer, located on a side of the first gate electrode; a second semiconductor layer, located on a side of the second buffer layer; a second gate insulating layer, located on a side of the second semiconductor layer; a second gate electrode, located on a side of the second gate insulating layer.
Abstract:
The present disclosure provides an array substrate, an electronic device and a manufacturing method of the array substrate. The array substrate includes a base substrate, and a first transistor and a second transistor on the base substrate, a first electrode of the first transistor being connected to a second electrode of the second transistor; the array substrate further includes a photodiode including a first electrode, a second electrode, and a photosensitive layer between the first electrode and the second electrode, and the first electrode is electrically connected to a gate of the first transistor. In the arrangement, the first transistor and the second transistor are connected in series to form one control unit, and the uniformity and stability of the control unit are greatly improved.
Abstract:
A display device is disclosed. The display device includes a display area and a wiring area. The display area is disposed with a first thin film transistor which is an oxide thin film transistor and a second thin film transistor which is a low temperature poly-silicon thin film transistor. A distance between a first active layer of the first thin film transistor and a substrate is different from a distance between a second active layer of the second thin film transistor and the substrate. The first thin film transistor includes first vias that receive a first source/drain. The second thin film transistor includes second vias that receives a second source/drain. The wiring area is provided with a groove. The groove includes a first sub-groove and a second sub-groove that are stacked, and depths of the second vias are substantially equal to a depth of the second sub-groove.